ﬂ SEensors

Article

Firmware Updates over The Air via LoRa: Unicast and

Broadcast Combination for Boosting Update Speed

Victor Malumbres 1, Jose Saldana *, Gonzalo Berné ! and Julio Modrego 2

Citation: Malumbres, V.; Saldana, J.;
Berné, G.; Modrego, J. Firmware
Updates over The Air via LoRa:
Unicast and Broadcast Combination
for Boosting Update Speed.

Sensors 2024, 24, 2104. https://
doi.org/10.3390/s24072104

Academic Editor: Juan V. Capella

Received: 16 February 2024
Revised: 6 March 2024
Accepted: 19 March 2024
Published: 25 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY)
(https://creativecommons.org/license

s/by/4.0/).

license

1 CIRCE Technology Center, Avenida Ranillas, 50018 Zaragoza, Spain; vmalumbres@fcirce.es (V.M.);
gberne@fcirce.es (G.B.)

2 Aijrfal International, C. Rio Esera, 5, Villanueva de Gallego, 50830 Zaragoza, Spain

Correspondence: jmsaldana@fcirce.es

Abstract: The capacity to update firmware is a vital component in the lifecycle of Internet of Things
(IoT) devices, even those with restricted hardware resources. This paper explores the best way to
wirelessly (Over The Air, OTA) update low-end IoT nodes with difficult access, combining the use
of unicast and broadcast communications. The devices under consideration correspond to a recent
industrial IoT project that focuses on the installation of intelligent lighting systems within ATEX
(potentially explosive atmospheres) zones, connected via LoRa to a gateway. As energy consump-
tion is not limited in this use case, the main figure of merit is the total time required for updating a
project. Therefore, the objective is to deliver all the fragments of the firmware to each and all the
nodes in a safe way, in the least amount of time. Three different methods, combining unicast and
broadcast transmissions in different ways, are explored analytically, with the aim of obtaining the
expected update time. The methods are also tested via extensive simulations, modifying different
parameters such as the size of the scenario, the number of bytes of each firmware chunk, the number
of nodes, and the number of initial broadcast rounds. The simulations show that the update time of
a project can be significant, considering the limitations posed by regulations, in terms of the per-
centage of airtime consumption. However, significant time reductions can be achieved by using the
proper method: in some cases, when the number of nodes is high, the update time can be reduced
by two orders of magnitude if the correct method is chosen. Moreover, one of the proposed methods
is implemented using actual hardware. This real implementation is used to perform firmware up-
date experiments in a lab environment. Overall, the article illustrates the advantage of broadcast
approaches in this kind of technology, in which the transmission rate is constant despite the distance
between the gateway and the node. However, the advantage of these broadcast methods with re-
spect to the unicast one could be mitigated if the nodes do not run exactly the same firmware ver-
sion, since the control of the broadcast update would be more difficult and the total update time
would increase.

Keywords: IoT; IIoT; LoRa; cybersecurity; over the air update; FUOTA; ATEX; firmware update

1. Introduction

The ability to perform firmware updates is an essential part of the lifecycle of Internet
of Things (IoT) devices, even those with constrained hardware resources. This is primarily
because security algorithms require regular updates, either as a response to the discovery
of a vulnerability or as a proactive measure. Additionally, firmware updates facilitate the
introduction of new functionalities on devices.

In certain situations, devices requiring updates can be manually flashed using a con-
nector. Alternatively, they may be connected via a cable that allows for the update. How-
ever, in many instances, these devices are inaccessible. For example, they may be in the
field or situated in ATEX (potentially explosive atmospheres) zones, where access requires
specially trained personnel and specific equipment. For instance, a luminaire designed for

Sensors 2024, 24, 2104. https://doi.org/10.3390/s24072104

www.mdpi.com/journal/sensors

Sensors 2024, 24, 2104

2 of 38

an ATEX zone might be installed on the ceiling of an oil and gas facility’s warehouse,
making it challenging to reach. In addition, the installation of additional wiring may not
be a feasible solution in these scenarios. Many industrial IoT (IloT) devices are dispersed
across the field, and, particularly in ATEX zones, regulations restrict the installation of
extra wires. At the same time, security is a must in these areas, usually related to critical
infrastructures which require relatively frequent security updates.

Many IoT protocols have been designed with the main objective of having a long
range, at the cost of a limited bandwidth. From the lowest to the upper layers, they are
conceived with a specific purpose in mind: to enable the efficient transmission of sensor
data over extensive distances, while necessitating only a minimal byte count. In many
instances, these protocols function within license-free bands of the electromagnetic spec-
trum. Regulatory bodies impose certain restrictions on airtime usage to prevent potential
congestion situations. Consequently, the volume of information that can be transmitted
by each device per unit of time is significantly limited.

Numerous wireless protocols possess the capability to transmit both broadcast (or
multicast) and unicast messages to and from devices. Although broadcast messages may,
in principle, provide a higher level of scalability, they have a limitation: they cannot be
acknowledged, so the sender is unable to ascertain which devices have received the mes-
sages and which have not. Furthermore, the sending of broadcast messages cannot be op-
timized (rate and power) for each of the receivers.

In this context, the problem to be addressed in this paper is to explore the ways to
wirelessly (Over The Air, OTA) update low-end IoT nodes with difficult access, combining
the use of broadcast and unicast communications. Specifically, the devices used in the
present study would correspond to the Low-end, Class 2 category of the classification pre-
sented in [1] (roughly 50 kB of RAM and 250 kB of flash). The challenge is to streamline
the roll out of a system update, eliminating the need for physical interaction with the de-
vice, while minimizing the time required. The update requires the successful transmission
of a set of fragments (chunks) of the firmware, and the subsequent flashing of the received
update by each and all the nodes.

If the quality of communication is high, an initial transmission of all firmware chunks
via broadcast/multicast frames could lead to a significant proportion of nodes possessing
a large portion of these fragments. Following this broadcast phase, a unicast communica-
tion could be used to ascertain the status of each node and deliver any remaining seg-
ments. However, in situations where communication quality is poor, the initial broadcast
phase may not be as effective. This raises several research questions related to scalability:
Is it always beneficial to start with a broadcast phase? Would it be more effective to con-
duct multiple broadcast phases prior to the final unicast stage? Other questions of interest
are: Should the maximum frame size always be used? How does the number of nodes
modify the problem?

As we will see, some architectures and methods for IoT updates [2] have been pro-
posed, which are divided into different stages, such as, e.g., the validation of a manifest,
the firmware exchange, the verification of a checksum, and the final secure flashing. It
should be noted that the present paper is mainly focused on the firmware exchange stage:
the phase in which the firmware chunks are sent through the air from the gateway to each
of the devices to be updated.

The devices under consideration correspond to a recent project that focuses on the
installation of intelligent lighting systems within ATEX zones. The nodes are low-end IoT
devices equipped with a microcontroller unit (MCU) of limited capacity, which is capable
of collecting data regarding light (consumption metrics, temperature readings, and any
detected malfunctions) using the DALI (Digital Addressable Lighting Interface) standard
[3]. Furthermore, it is also capable of gathering data from connected sensors. More specific
information about the devices is provided in Section 6.

As far as communications are concerned, LoRa is chosen for its extensive adoption
as a wireless protocol that possesses all the necessary attributes: in the considered

Sensors 2024, 24, 2104

3 of 38

industrial environments, it has good penetration, because it works in the license-free sub-

gigahertz band. In addition, ATEX elements require an enclosure which absorbs some

amount of energy. As we will see, for different reasons, we opt for the use of MiWi [4,5]

above the physical LoRa layer, instead of resorting to the more commonly used LoRaWAN

[6,7]. Although the experiments will be run on a scenario of this kind (LoRa in the EU868 band,

in an ATEX scenario), many of the presented findings may also be valid for other ones.

The main KPIs (Key Performance Indicators) usually considered for OTA update
methods are the update time, the energy consumption, and the update efficiency (the per-
centage of successfully updated nodes) [8]. In the present case, the energy cost incurred
by the firmware update is not relevant, since all the nodes are part of ATEX luminaires
connected to the power supply network, so batteries are not required. Another requisite
is that the update efficiency must be 100%, i.e., the procedure will not finish until all the
nodes have been updated. This leaves the update time as our main KPI. We define it as
the time required for updating a whole project, including a number of IoT devices, assum-
ing that the update is completed safely (i.e., the correct firmware is flashed on the device).
A reduction in the total update time is also relevant from a cybersecurity point of view: if
a new vulnerability is disclosed, the devices must be updated as soon as possible. The
total time is closely related to the consumed airtime, considering the limitations imposed
by regulations. As an example, the LoRa Alliance limits airtime usage to 1% of the total
time, and in certain cases, to 0.1% or 10% of it [9]. As we will see, one approach can be to
minimize the total update time, while keeping the airtime usage just below the limit.
Therefore, the results will be presented in this paper in terms of the total update time.

Allin all, the contribution of the paper can be summarized as:

1. The proposal, definition, and analysis of three methods for OTA firmware updates:
an only unicast one; another one that combines a number of initial broadcast stages
with a final unicast one, in which the pending chunks are sent individually to each
node (it will be called broadcast + unicast); and an improved one, in which the firm-
ware chunks are always sent in broadcast frames (only broadcast).

2. Anextensive evaluation of the different methods via simulation, considering a LoRa sce-
nario in the 868 MHz band. A test battery varying different parameters is carried out.

3. The implementation and evaluation, with real hardware, of the only unicast method
in an IoT intelligent lighting system.

The rest of the paper is organized as follows: Section 2 details the related work; Sec-
tion 3 presents the three proposed methods; Section 4 includes an analysis of the required
update times of each of them; In Section 5, a battery of simulations is presented, tuning
different parameters; Section 6 details the implementation of the unicast method in real
hardware; and the paper ends with the conclusions and future research.

2. Related Work

In this section, we summarize the related research papers regarding OTA updates,
security requirements for IoT devices, LoRa MAC protocols, and, finally, simulation tools
that can be used to test the considered protocols and scenarios.

2.1. Over the Air Update of IoT Devices

Back in 2006, before the rise of the IoT, the authors of [10], when talking about the
updating of wireless sensor networks, detailed the main challenges to be met by firmware
update algorithms: they should adapt to the limited processing capacity and memory of
the devices and they should be energy efficient, while ensuring the correct delivery of the
firmware. Finally, scalability was also considered as a relevant question, since it was
(rightly) expected that node density could increase dramatically in the near future.

More recently, an examination was carried out on the support for OTA updates
across 26 open-source loT operating systems and embedded software projects [11]. The
findings revealed that comprehensive information regarding the implementation of OTA

Sensors 2024, 24, 2104

4 of 38

updates was not provided by all projects, so the authors advocated for the establishment of
standard mechanisms. This would eliminate the necessity to construct OTA update systems
from scratch each time a new technology is under consideration for testing or implementation.

A recent standardization effort carried out by the Software Updates for Internet of
Things (SUIT) Working Group of the Internet Engineering Task Force (IETF) resulted in
the proposal of an architecture for firmware updates applicable to IoT devices, as detailed
in [2]. The architecture defines a set of entities: the cloud part, a firmware server, and the
end devices. It also defines a set of stages, including the validation of a manifest, the firm-
ware exchange, its validation, and secure flashing, etc.

The authors of [12] pioneered the implementation and testing of a firmware update
solution aligned with the architecture proposed by the IETF. Their tests were conducted
in two distinct environments, one of them using Wi-Fi in an LAN, and the other in a real-
world scenario with LoRaWAN gateways. Carlson’s work [13] was constructed entirely
on the foundation of the same IETF architecture, prior to its formalization as in [2], demon-
strating its adaptability and practicality. The implementation used Contiki-NG [14] as the
embedded operating system and the tests were carried out on a single board device.

The study in [15] presented LoRaP2P, describing an architecture and a method for
firmware updates in agricultural scenarios. A TDMA-based (Time-Division Multiple Ac-
cess) MAC protocol was defined, including a cycle of 32 time slots of 0.5 s each. In the
firmware updating stage, the gateway sent the chunks in broadcast frames, including 30
bytes of the firmware each, according to a customized packet structure. A “go-back N”
mechanism was implemented. To avoid problems if a node was restarted, the received
chunks were stored in a non-volatile memory. The system was implemented and tested
with real hardware.

The authors of [16] presented a system for remotely flashing ATMEL AVR microcon-
trollers via Wi-Fi and LoRa technologies. The paper was mainly focused on the hardware
part, and not on the exchange of firmware chunks.

A simulation tool called FUOTASim was developed in [8], with the aim of studying
the effects of LoORaWAN parameters on the firmware update process, considering the im-
pact on time, energy consumption, and efficiency. It allows the use of different data rates,
firmware and chunk sizes, and redundant codes. The study presented in [17] proposed a
firmware update protocol over LoRaWAN based on adaptative data rate techniques, de-
fined as a couple of spreading factor and bandwidth values. It was studied by the means
of simulations, using as KPIs the energy consumption of the end devices powered by bat-
teries and the security. The possibility of the firmware being stolen during the FUOTA
process was also studied.

The present paper is focused on the firmware delivery stage, and not so much on the
architecture (although an architecture is defined and employed, presented in Section 6).
In contrast to [15], in our scenario, the use of a TDMA protocol is not feasible due to two
specific reasons: first, it would require a synchronization mechanism; and second, in our
system, there are some asynchronous events that cannot wait for much time. To the best
of our knowledge, there is no standard procedure for firmware exchange in an OTA up-
date over LoRa. In our study, the focus is on the comparison between three different
modes that can be employed in firmware delivery. This happens during a concrete stage
of the update, but it is usually the most time-consuming one, as it is carried out using a
very slow wireless technology.

2.2. Security Update Requirements for IoT devices

In recent years, cyber attacks have become a major problem for industries and IT ser-
vices. They have the potential to inflict significant harm on businesses, products, and data.
In [18], a summary of the major attacks that have occurred in the last 20 years against
critical infrastructures was presented, also including an analysis of the types of attacks,
consequences, vulnerabilities, victims, and attackers. The paper also provided an

Sensors 2024, 24, 2104

5 of 38

estimation of the number of major cyber attacks that will occur on critical infrastructure
in the future.

These attacks are continually evolving, growing increasingly sophisticated. Now,
with the advent of the IoT, a new paradigm is emerging. IoT devices, ranging from smart
home gadgets to industrial equipment, are small and physically isolated, but connected
to a larger network, creating a tempting doorway for malicious actors. Many of these de-
vices are responsible for handling sensitive personal data and performing critical tasks,
making a loss of information or control a real concern [19]. As they are part of a larger
system, individual deep checks of the devices are not performed very frequently, and this
fact can be used by attackers to hide hacked devices from which they can read information,
monitor workflows, influence system behavior, or communicate with external agents.
With this in mind, it is important to establish cybersecurity strategies that keep devices
updated in advance of any threat.

Firmware serves as the foundational software embedded within IoT devices. Ensur-
ing its security is essential to prevent unauthorized access, data breaches, and the potential
manipulation of devices for malicious purposes. A recent review [20] emphasized the im-
portance of addressing vulnerabilities in firmware to enhance the security posture of IoT
ecosystems, thereby reinforcing trust and reliability for stakeholders.

The authors of [21] conducted a comprehensive analysis of the components within
an IoT operating system that receive the most updates post-deployment. They offered an
exhaustive quantification of the energy consumption tied to each stage of the process. In
[22], the authors present the barriers and cybersecurity targets of IoT devices and define
an architectural concept for securing Over The Air updates. In both articles, the main rea-
sons for software updates were similar: protocol and standard version updates; efficiency im-
provement; critical bug fixes and security updates; additional functionalities; integration with
third-party IoT systems; or adopting new communication standards and protocols.

Sometimes, devices are allocated in remote and inaccessible locations, especially in
industrial IoT (IloT) applications, highlighting the importance of protecting communica-
tions, particularly in critical processes such as FUOTA (Firmware Update Over The Air).
As stated by Catuogno and Galdi [23], ensuring the confidentiality, authenticity, and in-
tegrity of the data in these communications is essential. Although data encryption safe-
guards the firmware transmitted during FUOTA, it does not provide assurance against
potential data corruption or unauthorized alterations. This is where data integrity and
authenticity verification mechanisms become necessary. A checksum may act as a data
integrity guardian, and digital signatures provide a layer of authenticity verification.

As stated before, the present work is focused on the stage in which the firmware is
sent through the wireless link. This is a critical moment as far as security is concerned,
since the attack surface of a wireless protocol is, in general, higher than that of a wired
one: devices can be reached through an expanded area that is potentially accessible by a
greater number of systems, and more protocols are exposed due to the need for auto ne-
gotiation between the involved devices.

2.3. LoRa Protocols: MiWi and LoORaWAN

LoRa is a proprietary radio communication technique for the physical layer (Phy),
which expresses each symbol as a cyclic shifted chirp over a predefined frequency inter-
val. Several protocols have been defined as the upper layers of LoRa, such as LoRaWAN,
developed by the LoRa Alliance [6,7], which is the most widely used one.

LoRaWAN is a MAC layer protocol which comprises end devices, gateways, and
servers, using a star topology. End devices send and receive wireless messages to/from
gateways, which, in turn, communicate with the server in both directions. The gateway
serves as a translator between LoRa and UDP. The server handles the entire network, pro-
cessing messages and application data.

There are different types of LoRaWAN uplink and downlink messages, such as Join-
request, Join-accept, and others [6,7]. All messages are encrypted with AES-128. The peer’s

Sensors 2024, 24, 2104

6 of 38

handshake and activation can be OTAA (Over The Air Activation) or ABP (Activation By
Personalization). OTAA is the most secure and recommended method, due to its dynamic
address and security key exchange. In contrast, ABP requires hardcoding a device’s ad-
dress and security keys in its firmware.

The authors of [24] explored the use of wireless mesh networks based on LoRa Phy
as an alternative to LoORaWAN. The paper also included an experiment with sensors across
a university campus, covered by a single LoRa gateway, cooperating with a set of LoRa
devices acting as routers.

An alternative to LoRaWAN was proposed in [25], introducing several enhance-
ments, such as synchronization capabilities in the nodes for self-initialization and self-
maintenance. It also ensures reliable message delivery within scheduled time windows,
employs a multi-hop routing protocol to extend communication beyond the transmission
range, and dynamically adjusts the spreading factor based on the network conditions.

MiWi, developed by Microchip, is another MAC protocol which works on top of
LoRa. Its architecture includes: (a) PAN (Personal Area Network) coordinator/s, elements
that start and handle the network, and (b) end devices that connect, send, and receive
messages to/from coordinators, building a star, a mesh, or a P2P topology [4,5].

MiWi defines some fixed frames (also encrypted by AES-128), such as Connection re-
quest, Connection response, Connection removal request, and Data request, etc. The peer’s hand-
shake is easier to perform than in LoRaWAN, but it is less secure: it uses two messages,
exchanged between devices with a fixed PAN Coordinator Address (usually hardcoded
in the firmware).

In the present paper, MiWi was mainly chosen for architectural reasons. The role of
a LoRaWAN gateway is limited to relaying messages between the server and the end de-
vices, but our use case required a smarter gateway able to run the logic of the OTA update,
thus allowing a better comparison between the different algorithms. There is also a ro-
bustness-related reason: the gateway can coordinate the local devices, even if the connec-
tion to the server (or the server itself) fails. It is important to note that the gateway is typ-
ically linked to the same electrical circuit as the end devices, implying that both compo-
nents are likely to experience failure and recovery simultaneously. Finally, the communi-
cation latency between the end devices and the gateway is lower than the delay in com-
municating with the server, thus allowing a slightly faster control.

2.4. Simulations and Models for LoRa Environments

Many simulation tools exist that allow repeatable and controlled tests in big scenarios
with significant numbers of devices. ns-3 [26] is among the most popular ones, and it is
widely used for research purposes in wired and wireless scenarios. It is continuously im-
proved and extended in different ways, and it includes LoRa features. In this subsection, we
will summarize some works proposing and testing different LoRa functionalities in ns-3.

The authors of [27] extended the FUOTAsim simulator [8] to study a LoORaWAN sce-
nario. Firmware updates were carried out using multiple gateways instead of one. They
studied the benefits in terms of device energy consumption, update efficiency, update
time, and number of corrupted and lost fragments.

A LoRaWAN module was developed and tested for ns-3 in [28,29]. It can be used to
perform simulations of scenarios including Class A devices (one of the three classes of
LoRaWAN devices [30]), gateways, and network servers. It is modular, so it can also be
used for LoRa Phy simulations, without the need to implement the whole LoRaWAN
stack. This is interesting in our case, since we are using MiWi instead of LoRaWAN, as
explained previously.

Some ns-3 signal propagation models have been proposed and tested for urban and
city scenarios [31,32]. The results of these papers show that Cost-231 and Okumura-Hata
are the most fitted models for city scenarios. In addition, other propagation models for
low-population scenarios have been included in ns-3, which were compared and summarized

Sensors 2024, 24, 2104

7 of 38

in [33]. This paper showed that Nagakami is one of the most realistic ones. Therefore, this is
the model that is employed in the current study, given its suitability for industrial settings.

3. Proposed Update Methods

A firmware update is a critical procedure which must be performed carefully. For
that reason, after sending the binary file, a checksum must also be sent. Only if the check-
sum is correct will the new firmware be flashed. Three different methods are defined,
which only differ in the firmware exchange stage.

The only unicast method is the most straightforward one: it always sends unicast
frames, which need an ACK. It employs a “stop and wait” policy, so it only moves to the
next chunk when the gateway is sure that the previous one has been received, and it only
moves to the next node when the gateway is sure that all the chunks have been correctly
received by the previous one. It simplifies the control and the processing burden of the
node, with the counterpart of bad scalability: the update time will grow linearly with the
number of nodes.

The broadcast + unicast method just adds an initial broadcast round (or a number of
them) and then runs the only unicast method, but only with the missing chunks. It is ex-
pected to provide a significant scalability improvement, especially in scenarios with a low
frame loss probability. However, if the loss probability is high, the initial broadcast
round(s) may not be as effective and the update times will be similar to those of the only
unicast method. As a counterpart, more intricate control will be necessary: as there are no
ACKSs in broadcast transmissions, the node will have to transmit to the gateway the frames
it is missing. As we will see, a bitmap will be employed for that aim.

Finally, the only broadcast method is a variation of the previous one, with the objective
of increasing the scalability even more: by sending the missing chunks in broadcast
frames, it can be expected that other nodes will also benefit from these transmissions to
store some of the pending chunks.

In the next subsections, each method will be explained in detail.

3.1. Only Unicast Method

The update process is governed by some variables stored by the node: the first one
(bin_frags) represents the number of received fragments of the binary file. Another variable
(check_frags) stores the number of received fragments of the checksum. It must be 0 until
all the fragments of the binary file have been received. Finally, another variable stores the
current firmware version.

These are the stages of the update (see Figure 1):

(a) Initial stage. The update starts when the gateway sends an OTA RESET REQUEST.
The node then sets both counters to 0 and answers with an OTA RESET CONFIRMED,
which includes its current firmware version. If the gateway does not receive an answer, a
timeout triggers a new OTA RESET REQUEST. Once the gateway receives the confirma-
tion, it checks that the firmware version running at the node is different from the one that
is going to be transmitted and flashed.

(b) Sending of the binary. This uses OTA BINARY FRAGMENT frames, which include
an identifier (FRAGMENT NUMBER). The gateway sends the fragments, following a
“stop and wait” policy: if a fragment with the incorrect identifier arrives, it is discarded
and a WAITING FOR BINARY FRAGMENT message is sent by the node, specifying the
expected fragment. When sending the last fragment, the gateway uses a special message
called OTA BINARY LAST FRAGMENT. After that, it sends an OTA STATUS REQUEST,
and the node answers with an OTA STATUS RESPONSE, including the field bin_frags
(number of binary fragments).

Sensors 2024, 24, 2104

8 of 38

LoRa Gateway LoRa End Node

N 1 OTA RESET REQUEST :
- l
S
»
© S OTARESETCONFIRMED __ _________. Number Chunks:=0
E ' '
£
. Fragment 0x00
l ___________________ Ack . £ Number Chunks:=1
wait
E‘ Fragment 0x01 '
©
£
yel Ack Number Chunks :=2
© I R
< H H
=
— o
o
jo2)
% Fragment 0x021D
o
) e Ack Number Chunks :=542
wait !
Fragment 0x021E (TY PE 0x05)
- I P Ack . L Number Chunks:=543
. F E Last Chunk Of Firmware
E o
4
@ =
S E Fragment 0x0 (TYPE 0x07)
o 3
S
" Ack Number hash Chunks:=0
P [mm e R
< |
=
w—
o wait
(o2}
£ Fragment 0x01 (TY PE0x08)
©
GCJ Number hash Chunks=1
@ = e Lol S Last Chunk Of hash
2 T
< wait OTA STATUS REQUEST
c
[7]
g Checksum Verification
Lo} | OTA STATUS RESPONSE |
c L [§ T T
wait
° a‘ ASK TO FLASH
1S
3
g
[] Autoflash and reboot
(3]
e
O
-
[HANDSHAKE REQUEST
=
=
T A wait
8 OTA STATUS REQUEST
©
c OTA STATUS RESPONSE
c L e QMBS RESPONSE

Text is not SVG - cannot display |

Figure 1. Stages of the only unicast method.

(c) Sending of the checksum. If the number of binary fragments reported by the node is
correct, the gateway starts a similar procedure for sending the checksum, which may re-
quire one or more frames. The last fragment of the checksum is sent inside an OTA
CHECKSUM LAST FRAGMENT frame. This stage concludes when the node sends an OTA
STATUS RESPONSE frame with the correct value of check_frags (number of checksum
fragments).

(d) Checksum validation and firmware flashing. The gateway waits a time interval to let
the node calculate the checksum. Then, it sends a new OTA STATUS REQUEST. The node
answers with an OTA STATUS RESPONSE. If everything is correct, the gateway sends an
OTA FLASH NEW VERSION order. The node flashes the firmware it has stored and re-
boots. If the checksum is not correct, the procedure starts again.

(e) Final confirmation. The gateway waits a time lapse to let the node flash and reboot.
Finally, once the node has associated again, it sends an OTA STATUS REQUEST frame. In
the response, the node includes its firmware version, which should be the new one.

Sensors 2024, 24, 2104

9 of 38

3.2. Broadcast + Unicast Method

This version of the update protocol (see Figure 2) makes use of broadcast LoRa
frames. However, two unicast stages are also required, as we will next explain.

LoRa Gateway LoRa End Node

OTA BROADCAST START REQUEST - unicast

ST T rhapiagtycfaydripaiylplsptpiptylsiptihylppigyap bitmap[i]:=0

{ bitmap[0]:=1

H
i fragment not arrived
X bitmap[1]=0

Initial stage

S

Fragment 0x00 - broadcast

wWait

Fragment 0x01 - broadcast

Fragment 0x021D - broadcast

Sending of the binary
Jo

fragment not arrived
bitmap[542]=0
wWait

Fragment 0x021E - broadcast

{ bitmap[543]:=1
Last Chunk of Firmware
H

SEND ME THE BITMAP - unicast

'
H H
' '
' '

BITMAP - unicast L
 RRGRLCLESIEL LR ERRE PR :
' '
' '
' '

T bitmap[1]:=1

ACK L
.< ---------------------------------- T bitmap[542]:=1

Sending of the pending chunks
J
Y
Px
' 2
el

Same as only unicast:

- Sending of the checksum

- Checksum validation and firmware flashing
- Final confirmation

Figure 2. Detail of stages (a), (b), and (c) of the broadcast + unicast method. The red crosses corre-
spond to lost frames.

Each node stores a variable with its current firmware version number, and a bitmap
in which each bit is set if the corresponding chunk has been received.

These are the stages:

(a) Initial stage (unicast). The gateway sends a unicast message OTA BROADCAST
START REQUEST to each of the nodes. The message includes the number of the new firm-
ware version, the number of chunks, and the size of each chunk (note that the last chunk
may be smaller than the rest). When a node receives this message, it sets all the bits of the
bitmap to 0 and answers with an OTA BROADCAST START CONFIRMATION. This mes-
sage includes the number of the current firmware version running in the node.

(b) Sending of the binary (broadcast). The gateway starts sending broadcast OTA BI-
NARY FRAGMENT frames, which also include the identifier of the chunk. When a node
receives one of these messages, it stores the received bytes in the corresponding position,
calculated from the initial memory position, and the identifier is multiplied by the size of

Sensors 2024, 24, 2104

10 of 38

the chunk. It also sets the corresponding bit of the bitmap to 1. There is no acknowledge-
ment. The gateway may perform one or more broadcast rounds. If a node has already
received a chunk, it just discards new messages containing the same chunk. After this
stage, while some nodes may have received all the chunks, others may have only received
a portion of them.

(c) Sending of the pending chunks (unicast). The gateway starts with the first node. It sends
amessage SEND ME THE BITMAP. The node answers with a BITMAP frame, which specifies
the identifier of the missing chunks. The gateway sends all these chunks in unicast frames,
following the only unicast method, but this only applies to the pending chunks.

After this, the method is equal to the three last stages of the unicast mode (not de-
tailed in Figure 2), namely Sending of the checksum, Checksum validation and firmware flashing,
and Final confirmation.

3.3. Only Broadcast Method

There is an improvement that can be applied to the previous method, which modifies
stage (c). It mainly consists of sending the pending chunks in broadcast frames (see an
example in Figure 3): the gateway sends a SEND ME THE BITMAP frame to the node,
which answers with a BITMAP frame specifying the missing chunks: in this example,
chunks #1 (0x01) and #542 (0x021D) are missing. Then, the gateway sends each of them
once, in broadcast frames. In the example, the former is received correctly, but the latter
is not. Then, the gateway sends again the SEND ME THE BITMAP frame. The node an-
swers with the updated bitmap, in this case, only including fragment #542 as missing. The
gateway sends it again and then requests the bitmap. In the example, the node answers
with an ALL CHUNKS RECEIVED frame.

LoRa Gateway LoRa End Node

Same as broadcast + unicast:
- Initial stage
- Sending of the binary

SEND ME THE BITMAP - unicast

I BITMAP - unicast u]
S EAGRERERERREE S CEREL L RERRRR R .

Fragment 0x01 - broadcast

I uJ bitmap[1]:=1
' Fragment 0x021D - broadcast L
SEND ME THE BITMAP - unicast
l BITMAP - unicast u]
L R CEEETEEEE NP PERERRREER :

Fragment 0x021D - broadcast

| | bitmap[542]:=1

SEND ME THE BITMAP - unicast

Sending of the pending chunks
J

‘ ALL CHUNKS RECEIVED - unicast u:l
- D

Same as broadcast+unicast:

- Sending of the checksum

- Checksum validation and firmware flashing
- Final confirmation

Figure 3. Detail of stage (c) of the only broadcast method.

The advantage of this method is that, as the gateway has sent chunk #1 (once) and
#542 (twice) in broadcast frames, any other nodes which are missing them will also be able
to store them in the corresponding position of the flash memory.

Sensors 2024, 24, 2104

11 of 38

As before, the gateway follows an order, and it will not ask node j about the chunks
it is missing until node j - 1 has received all the chunks. Therefore, the final nodes are
more likely to have received the complete firmware by the time the gateway queries them.

4. Analytical Expression of the Total Update Time

In this subsection, we include an analysis of the main considered KP], i.e., the time
required to update a project. The problem is to find an expression for the time required to
correctly transfer M chunks of the firmware to each of the N nodes in the project. The
analysis will be focused on the main part of the update, i.e., sending the firmware chunks.
It should be noted that the airtime, i.e., the time in which the medium is occupied, is dif-
ferent from the total time required for the update, because the duty cycle imposes some
limitations (e.g., only 1% of the airtime can be used). Therefore, after sending each frame,
the nodes must calculate a time interval in which nothing can be sent to the air [9].

In the analysis, we will consider a fixed transfer rate for the whole project, i.e., the
gateway uses the same modulation and bandwidth for all the nodes. In the case of LoRa,
this means that the gateway will use a fixed spreading factor and channel bandwidth.

4.1. Only Unicast Method

The gateway starts with the update of the first node: it sends the first chunk, waits
for a valid ACK, then sends the second chunk, and so on. The process is repeated until the
Nt node is updated.

To correctly calculate the update time, the duty cycle must also be considered, as it
affects every frame, including the ACKSs. It works this way: let us assume that the duty
cycle is d (a typical value for d is 1, which means a duty cycle of 1%). This means that when
a node sends or receives a frame that occupies a certain Time on Air (ToA), no frame will
be sent during a time equivalent to:

(%2 -1)-Toa.)

As an example, if ToA is 313 ms and d = 1, the nodes will wait 99 x 313 ms = 30,987 s
after being allowed to send a new message.

Therefore, the total transmission time for sending a chunk to a node consists of the
time spent during the failed attempts, plus the time required for the final successful trans-
mission. Let pj be the probability of node j not receiving a chunk correctly. If a chunk re-
quires 7 transmissions, this means that it has failed i — 1 times (a failure happens with a
probability pj) and arrived one time (this happens with a probability 1 —pj). So, the average
number of times that a chunk will be sent to node j can be obtained as the next sum:

w0 - i—1 o . i1
SZoi(l-pp; = (1-p)Eoin; -)
The second term is a power series like ¥.{2oi - p'~*, which converges for |p| < 1. In this
case, the sum of the series is given by the formula S = 1/(1 — p)?. Therefore:

(1-p;) X ini_l =(1-p))

_ - 3
a-pp? 1-pj ®)
This means that the number of unsuccessful transmissions before the final (success-
ful) one will be:
2 1=
o Ty)
Let ToAq: be the transmission time of a chunk and ToAa« the transmission time of an
ACK. Each unsuccessful transmission takes ToA plus the corresponding wait time. The
time spent on the transmission of unsuccessful chunks to node j will be given by the prod-
uct of the number of transmissions (4) and the time spent on each of them (1):

Sensors 2024, 24, 2104

12 of 38

P 100 4).
= [Todch + (5= 1) ToAq|. ®)
The time spent by the final successful transmission has four components: first, the
time for the transmission of the chunk (ToA); second, the wait time; third, the time on air

of the ACK (ToAax); and fourth, the wait time after the ACK:

ToAe, + (5

—1)ToAy + ToAgq + (5

=- 1) - ToAgex- (6)

Therefore, the time spent sending M chunks to N nodes using the only unicast method
(denoted as tuni) will be given by the expression:

100 1
tuni = MT . jy=1 (E : TOACh + TOAACK)' (7)

4.2. Broadcast + Unicast Method

This method starts with a set of B broadcast rounds, in which all the chunks are sent
to the air. Each node stores received chunks and builds a bitmap of missing ones. After
that, a unicast round starts, asking the first node about the bitmap containing its missing
chunks, sending each of them, and so on.

The time required to broadcast M chunks B times, considering the duty cycle limita-
tions, will be:

100

tor= M-ToAan - a .

B.t ®)

The probability that a chunk is not received by node j after B broadcast rounds will

be pj B. In the final unicast round, the average number of times that a chunk will be sent
1

1-p]"

The time spent in the final unicast rounds of all the N nodes can be obtained in a
similar way to (8), adding two new terms corresponding to the bitmap request (ToAr)
and response (ToAbvit):

to node j will be as obtained in (4).

100 1
tuni= MT . 9’:1 [p]B ' (E ' TOACh + TOAACK) + TOAreq + TOAbit]' (9)

To obtain a simplified expression, we can make an approximation that all loss prob-
abilities are approximately equal (i.e., pj= p). Therefore, the sum of N equal elements can
be expressed as a product (by N):

100 1
funi= MAS2N-[p® - (E “T0Acy + T0Agcic) + T0Areq + ToAyi|. (10)

The total time required for B broadcast rounds plus a unicast one for each of the N

nodes can be obtained as the sum of (8) and (10):

b= M2 [ToAch B+ N[p®- (ﬁ “T0Acy +T0Ascic) +T0Areq + ToAbit]]. (11)

If we obtain the derivative of twrwuni, with respect to B, and equal it to zero, an optimal
value of B that minimizes the total time can be obtained. The expression can be simplified
assuming that the length of the chunk is much higher than the length of the ACK i.e,,

ﬁ- ToAg » ToAuck:

B=logy (er)r:é?))' 12)

As an example, Figure 4 is obtained with M = 534 chunks (23 bytes of header and 192
of payload each, i.e., a firmware of 1024 kB), a Spreading Factor =7, and different values
of N and B. In Figure 4a, the frame loss probability is 1%. It can be observed that the opti-
mal number of broadcast rounds (B) is always 1. However, if the loss probability is signif-
icantly higher (40%), this can be different: in Figure 4b, the optimal value of B is not 1. Even

Sensors 2024, 24, 2104

13 of 38

for 10 nodes, the best option is to run three rounds at the beginning, and the optimal value of
B grows with the number of nodes: for example, with N =50 nodes, the optimal value is B =5.
In both figures, it can be observed that the time cost stabilizes after some broadcast rounds: if
the number of nodes is high, the time of a broadcast round is negligible with respect to the
time spent in the unicast ones. As a conclusion, when the loss probability is high, it is advisable
to perform a number of broadcast rounds before the final unicast one.

Total time (Broadcast + unicast)
5000

—-N=10 -+-N=20 N=50

N=100 —-N=200 -=-N=500
‘= 500 + T .
< — .
E e
<
g 50
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: Number of broadcast rounds before the final unicast one

(a)
Total time (Broadcast + unicast)

—-N=10 -+-N=20 N=50

1000 & N=100 —=—N=200 —=-N=500

100

total time [h]

10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: Number of broadcast rounds before the final unicast one

(b)

Figure 4. Broadcast + unicast method: total update time for different values of the number of nodes
and the number of broadcast rounds: (a) loss probability = 1% and (b) loss probability = 40%. Note
that the Y axis is in logarithmic scale, and that the ranges of (a,b) are different.

4.3. Only Broadcast Method

This method has a first stage in which all the chunks are broadcast B times. The time
required for this stage is the one obtained in (8).

In the second stage, the gateway sends a request to the first node, specifically inquir-
ing about the chunks that are missing. After the node’s response including the bitmap,
these chunks are sent in broadcast frames that can also be received by any other node.
After that, the gateway asks again about the missing chunks: if the response of the first
node is an ALL CHUNKS RECEIVED frame, the gateway switches to the second node;
otherwise, it means that the first node is still missing some chunks, so they are broadcast
again to it, and so on.

Sensors 2024, 24, 2104

14 of 38

To obtain the total update time of a node during the second stage, we must calculate
the number of times a chunk is sent to the air in this phase. For simplicity, we will assume
that the time required to exchange the bitmaps is negligible with respect to the time re-
quired to exchange the firmware chunks (ToA., »> T0Aeq + T0Ap;t).

Let nij be the number of times that chunk i is sent to node j. To calculate its expected
value for the first node (j = 1), namely E[#ni1], we can consider that it is the product of the
probability of node 1 not having received chunk i in the first B rounds (p:f), and the num-
ber of times it will be sent specifically to node 1 in its round, i.e., 1/(1 - p1):

E[nia] = I_Lpl-plB. (13)

The subsequent values of E[/] (j > 1) will depend on the number of times that chunk
i has been previously sent to the air (E[n:j-1]). E[ni] can be obtained as the sum of E[ni-1]
plus the number of times the chunk is sent in this round, i.e., the product of the number
of times the chunk will be sent to node j, i.e., 1/(1 - pj), and the probability of node j having
not received it. The value can, therefore, be calculated recursively with this formula:

E[ngj_4]

1
E[nij] = E[nij] + 1—_Pj P; . (14)

Using the same parameters employed in the previous subsection, the update time of
this method can now be depicted: Figure 5a is obtained with p;j = 1% for all the nodes, and
Figure 5b with pj = 40%. The graphs show that the loss probability has a strong influence
on the update time, as could be expected. In this case, the graphs keep on growing, even
for B = 15: as the total time required by this method is lower, the time spent in the initial
rounds is more significant than that of the broadcast + unicast method.

Total time (Only Broadcast)
100

10

>

total time [h]

—-—-N=10 N=20 N=50

N=100 —-N=200 —e-N=500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: Number of initial broadcast rounds

(a)

Sensors 2024, 24, 2104

15 of 38

Total time (Only Broadcast)

100

<

© |

£

I

e --N=10 N=20 N=50

N=100 —e~N=200 —e~N=500

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: Number of initial broadcast rounds

(b)

Figure 5. Only broadcast method: total update time for different values of the number of nodes and
the number of initial broadcast rounds: (a) loss probability = 1% and (b) loss probability =40%. Note
that the Y axis is in logarithmic scale, and that the ranges of (a,b) are different.

In this case, it is exactly the same to perform an initial broadcast round (B = 1) as just
starting to sending the firmware chunks to the first node (B = 0), so the rest of the nodes
will hear and store some of them. In addition, the optimal number of broadcast rounds is
0 or 1, i.e., making more than one round does not provide any benefit.

5. Simulation Tests and Results

The use of a simulation tool is seen as quite convenient to obtain results that can
confirm the analytical ones. The advantage of simulations is that they are repeatable and
can include a high number of nodes. This section describes the building of an ns-3 simu-
lation environment, which is used to compare the different firmware update algorithms
that have previously been proposed. The simulation only considers the firmware ex-
change phase (the Sending of the checksum and the Checksum validation and firmware flashing
stages are not covered, since they are the same for every method). The tests and results
with the real implementation will be reported in the next section.

5.1. Simulation Environment

The simulations include a single gateway, located in the center of the virtual scenario,
and a number of nodes to be updated, distributed in a circular area around it (Figure 6). The
distance to the gateway follows a uniform distribution between 0 and the maximum radius.

Sensors 2024, 24, 2104

16 of 38

Module of distance [between peers and gateway]

Figure 6. Circular scenario with 10 peers and a maximum radius of 2000 m.

The setup uses the LoRa Phy layer developed in [28], with the Nagakami loss model
[33], which matches the scenarios of interest. The Spreading Factor (SF) is fixed to 7, and
the bandwidth of the LoRa channel is always 125 kHz. These two parameters are chosen
because they are widely used in commercial deployments. A 1% duty cycle is used, as
required by the LoRa Alliance in many cases.

The frames have a header of 23 bytes plus a payload of 192 bytes (by default). The
size of the payload must be a multiple of 16 bytes, because this is the block size of the AES
ciphering algorithm. In some tests, different frame sizes are employed.

As a summary, Table 1 includes all the parameters employed. Figure 7 shows the
architecture of the simulation environment. On the one hand, it has the next input param-
eters: LoRa Spreading Factor, number of nodes, size of the firmware, number of iterations
to be simulated, size of each firmware chunk, size of the ACKs, maximum radius, and
number of broadcast rounds (only applicable in the broadcast methods). On the other
hand, the simulation outputs are conformed by several csv files that include the peer co-
ordinates on the scenario and the detailed results of the three FUOTA methods: the
timestamp and RSSI (Received Signal Strength Indicator) of each frame exchange. The
total time required for updating the whole project corresponds to the timestamp of the
last frame.

-

Simulation Input Parameters

SF

Number Of Nodes
Size Of Firmware [kB]
Number Of Iterations
Size Of Chunk [Bytes]

Size Of Node's ACK [Bytes]
Size Of Sceneario Radius [Meters] \Simu\ator Launcher
\Number Of Broadcast Rounds Y, Visualization Of Results

|

Simulation Output Files
6 LoRaSim h (P

K - Map Coordinates Per Node
Simulator Configurator Only Unicast Method Results Per Node

. Broadcast + Unicast Method Results Per Node
> Simulator Parameter Handler |———>| only Broadcast Method Results Per Node

Matrix Of Failed Packets On Simulation
Y, Statistics Of Results

(LoRaSimLogs W (LoRaSimConst W (LoRaSimGeo W (Scripts w (NS - 3 W

LLogging Module J LSimu\alor'S Constants J LMap / Scenario Generator J Plotter Module LoRa Phy /Channel
Output File Handler LoRa End Device

LoRa Gateway

Delay & Loss Models

Figure 7. LoRa simulation environment (on top of ns-3).

Sensors 2024, 24, 2104

17 of 38

Table 1. Simulation parameters.

Parameter

Range/Values

Circle scenario radius
Number of nodes to update (N)
Number of initial broadcast rounds (B) (only for

From 100 to 2000 m
10 to 150 nodes

the broadcast methods) 1by default
Default size of a frame containing a firmware 215 bytes (23 header + 192 payload)
chunk
Firmware size Fixed to 100 kB
Spreading factor Fixed to SF7
Bandwidth of the LoRa channel Fixed to 125 kHz
Channel 868 MHz
Sensitivity of the LoRa receptors Fixed to -125 dBm
Duty cycle 1%
. Log Distance
Propagation model (nsB::LogDistancfPropagationLossModel)
Nagakami

Loss model (ns3:NakagamiPropagationLossModel)

The simulator uses a set of ns-3 libraries, including LoRa Phy, LoRa End Device, LoRa
Gateway, and Delay/Loss Models. Furthermore, different C++ layers are included on top
of ns-3: LoRaSimGeo (as scenario generator), LoRaSimConst (managing simulation con-
stants), and LoRaSimLogs (for handling and saving logs and simulation results). LoRaSim
is the main simulation layer, which handles the simulation parameters and launches each
simulation iteration (for each FUOTA method), extracting results on the output files.

Finally, a set of Python scripts are used to manage the output files and build the graphs
showing the results. The Pandas, Seaborn, and Matplotlib modules are used for that aim.

We first present a set of results for single runs of the OTA update of 10 nodes, with
each of the three methods, using two values for the maximum radius: 400 m and 2 km.
They are useful for obtaining insights about the behavior of each method. Then, the aver-
aged results obtained with a battery of simulations will be presented in the following sub-
sections, allowing us to devise more general conclusions.

5.2. Comparison between the Update Methods Using Single-Run Simulations
5.2.1. Only Unicast Method

The results obtained in a scenario with a radius of 400 m are presented in Figure 8:
the timestamp and the RSSI of the reception of each firmware chunk by the node are
shown in (a), and the timestamp and the RSSI of the reception of each ACK by the gateway
in (b). The red line represents the sensitivity of the receptor, i.e., the frames below that line
are lost and retransmission is required.

Sensors 2024, 24, 2104

18 of 38

RSSI [dBm]

RSSI [dBm]

= =
NP O © & N
S o &S 6 o

B
5w
[SIRS

s
B o © b N
o & o 6 o

B e
2w N
S & o

-150
-160

Frames from gateway to peers

0

. *node0 - nodel node 2 node3 - node 4
» node 5 * node 6 * node 7 - node 8 - node 9
20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
Simulation time [s]

()

Frames from peers to gateway (ACK)

* node 0 * node 1 node 2 node 3 * node 4
» node 5 * node 6 * node 7 - node 8 * node 9

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
Simulation time [s]
(b)

Figure 8. Only unicast firmware update of 10 peers with a maximum radius of 400 m: (a) RSSI of the
frames received by each node, containing the firmware chunks; and (b) RSSI of the ACK frames
received by the gateway. The red line corresponds to the sensitivity of the receiver.

As can be observed, in this case, almost all the frames are received correctly (the RSSI
is above the sensitivity), so there are hardly any retransmissions. Consequently, the time
for the update of each of the nodes is roughly the same. Another remark is that the differ-
ence between Figure 8a,b is minimal, which could be expected, considering that the chan-
nel is symmetrical and that a frame is always followed by an ACK.

The total update time of the project is 176,725 s, i.e., roughly 49 h, equivalent to less
than 5 h per node. This time is significant, and is mainly imposed by the 1% duty cycle,
which means that the air usage is slightly higher than 29 min.

Figure 9 reports the results of a scenario with a maximum radius of 2 km. As can be
observed, some nodes (#4, #5, and #8, note that numbering starts with #0) are very close
to the gateway, so they receive most of the frames upon the first attempt and their update
times are shorter than those of other nodes such as, e.g., #2, #3, #6, and #9, which require
many retransmissions. The time difference can be quite significant: from 35,664 s for node
#6 to 21,258 s for node #8.

Sensors 2024, 24, 2104

19 of 38

-100
-110
-120
-130
-140
-150

RSSI [dBm]
KN
(2]
o

-170
-180
-190
-200

-100
-110
-120
-130

RSSI [dBm]
N N
~N o g b
o O O o

-180

KN
[{e]
o

-200

Frames from gateway to peers

* node 0 * node 1 node 2 node 3 * node 4
- node 5 - node 6 - node 7 - node 8 - node 9
50,000 100,000 150,000 200,000 250,000 300,000
Simulation time [s]

(a)

Frames from peers to gateway (ACK)

* node 0 - node 1 node 2 node 3 * node 4
» node 5 * node 6 * node 7 * node 8 * node 9

50,000 100,000 150,000 200,000 250,000 300,000
Simulation time [s]

(b)

Figure 9. Only unicast firmware update of 10 peers with a maximum radius of 2 km: (a) RSSI of the
frames received by each node, containing the firmware chunks; and (b) RSSI of the ACK frames
received by the gateway. The red line corresponds to the sensitivity of the receiver.

In this case, the total update time of the project is 294,613 s, i.e., 81.8 h (air usage of
49 min). The higher distance results in an increase of 66% in the update time with respect
to the 400 m case.

5.2.2. Broadcast + Unicast Method

The firmware update of 10 nodes, with a maximum radius of 400 m, is simulated
using the broadcast + unicast method. The results presented in Figure 10a show the RSSI
values seen by each node, i.e., during the broadcast phase (from 0 to 16,097 s), each frame
appears 10 times, with the RSSI value corresponding to the receiving node. When this
phase ends, a unicast one starts, in which the pending chunks of each node are completed
(in this case, it takes 644 s to send 26 chunks to the nodes). As can be observed in Figure
10b, ACKs are sent by the nodes only in the unicast phase, in which the lost frames are
sent individually.

Sensors 2024, 24, 2104

20 of 38

RSSI [dBm]

RSSI [dB

-150
-160

Frames from gateway to peers

- node 0 - node 1 node 2 node 3 * node 4
- node 5 * node 6 » node 7 - node 8 - node 9
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

Simulation time [s]

()

Frames from peers to gateway (ACK)

* node O * node 1 node 2 node 3 * node 4
* node 5 * node 6 * node 7 - node 8 * node 9
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

Simulation time [s]
(b)

Figure 10. Broadcast + unicast firmware update of 10 peers with a maximum radius of 400 m: (a) RSSI
of the frames received by each node, containing the firmware chunks; and (b) RSSI of the ACK
frames received by the gateway. The red line corresponds to the sensitivity of the receiver.

The total time in this case is 16,775 s, i.e., 4.6 h. It represents 10.53% of the time re-
quired by the only unicast algorithm (see Figure 8): the update time is roughly divided by
the number of nodes (N = 10 in this case). It should also be noted that the broadcast stage
is faster than the unicast update of a single node, which required 17,672 s on average,
because, in this case, no ACKs are required.

Next, another example illustrates what happens if the distance to the nodes is much
higher (a maximum radius of 2 km). The results presented in Figure 11a show that, in this
case, many frames arrive at the nodes below the sensitivity limit, so they are not received
correctly. The broadcast stage lasts the same as that in the previous case: 16,097 s. But, in
this example, the unicast stage is much longer: 120,316 s for the 10 nodes (see the ACKs
Figure 11b).

Sensors 2024, 24, 2104 21 of 38

Frames from gateway to peers

-100
-110

< node 0 * node 1 node 2 node 3 * node 4
» node 5 * node 6 » node 7 - node 8 * node 9

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Simulation time [s]

(a)

Frames from peers to gateway (ACK)

* node O * node 1 node 2 node 3 * node 4
- node 5 - node 6 - node 7 - node 8 - node 9
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Simulation time [s]

(b)

Figure 11. Broadcast + unicast firmware update of 10 peers with a maximum radius of 2 km: (a) RSSI
of the frames received by each node, containing the firmware chunks; and (b) RSSI of the ACK
frames received by the gateway. The red line corresponds to the sensitivity of the receiver.

The total time in this case is roughly 136,413 s, i.e., less than 38 h. It represents 46.3%
of the time required by the only unicast method for the same distance (see Figure 9). The
benefit is not so relevant in this case: a high number of chunks did not arrive correctly in
the broadcast stage, so the unicast one is quite long. Nevertheless, it is shown that, in this
case, a single initial broadcast round is able to halve the total update time.

5.2.3. Only Broadcast Method

The third example presents the results of the only broadcast method in the small sce-
nario (maximum radius of 400 m). The initial broadcast stage lasts 16,097 s (Figure 12a),
as in the previous case. In the next stage, the gateway asks each node for the bitmap in-
cluding the missing chunks. When it receives the response, the chunks are sent in broad-
cast frames. Figure 12b represents the RSSI of the received chunk if the node was missing
that chunk. In this case, the first broadcast phase is very successful, so only 19 chunks are
sent to the nodes (in broadcast frames) in the second stage.

Sensors 2024, 24, 2104

22 of 38

RSSI [dBm]

RSSI [dB

First Broadcast Phase (from gateway to peers)

* node 0 * node 1 node 2 node 3 * node 4
* node 5 * node 6 * node 7 - node 8 * node 9
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000
Simulation time [s]
(a)
Second Broadcast Phase (from gateway to peers)
* node 0 * node 1 node 2 node 3 * node 4
» node 5 * node 6 - node 7 - node 8 * node 9
2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

Simulation time [s]
(b)

Figure 12. Only broadcast firmware update of 10 peers with a maximum radius of 400 m: (a) RSSI of
the frames sent by the gateway, containing the firmware chunks; and (b) RSSI of the frames received
by the nodes which are missing them. The red line corresponds to the sensitivity of the receiver.

The total time is 17,542 s, so it is slightly worse (4.5%) than that of the broadcast +
unicast method. This difference is caused by the method followed in the final rounds: in
the broadcast + unicast method, after a single request for the bitmap, all the pending chunks
are sent and then the corresponding acknowledgement is received, which is relatively fast
if the number of pending chunks is low. However, in the only broadcast method, a SEND
ME THE BITMAP message has to be sent a number of times until an ALL CHUNKS RE-
CEIVED message is sent by the node. Therefore, the number of messages is higher. How-
ever, if the number of pending chunks is high, the only broadcast method has the advantage
of allowing any node to receive any pending chunk that is sent to the air in a broadcast
frame, as we will see in the next example.

Another simulation is run using the big scenario (maximum radius 2 km). In this
case, the broadcast phase lasts exactly the same time: one round which lasts 16,097 s (Fig-
ure 13a). The advantage with respect to the broadcast + unicast method can be clearly ob-
served in the next stage: since the chunks are sent inside broadcast frames, other nodes
different from the original destination may also receive and store them. In Figure 13b, we
represent the RSSI of the frames received by the nodes that are missing the corresponding
chunks. As can be observed in Figure 13b, at the beginning of this stage, a lot of nodes
receive and store missing chunks which were requested by other nodes. However, when
a node receives all the chunks, its color disappears from the graph.

Sensors 2024, 24, 2104

23 of 38

RSSI [dBm

RSSI [dBm]

-100

-110
-120 ¢

-130
-140
-150
-160
-170
-180
-190
-200

-100
-110
-120
-130
-140
-150
-160
-170
-180
-190
-200

First Broadcast Phase (from gateway to peers)

- node 0 - node 1 node 2 node 3 - node 4
* node 5 * node 6 * node 7 node 8 * node 9
10,000 20,000 30,000 40,000 50,000 60,000 70,000
Simulation time [s]

(a)

Second Broadcast Phase (from gateway to peers)

» node 0 - node 1 node 2 node 3 * node 4
° * node 5 * node 6 * node 7 node 8 - node 9
10,000 20,000 30,000 40,000 50,000 60,000 70,000
Simulation time [s]

(b)

Figure 13. Only broadcast firmware update of 10 peers with a maximum radius of 2 km: (a) RSSI of
the frames sent by the gateway, containing the firmware chunks; and (b) RSSI of the frames received
by the nodes which are missing them. The red line corresponds to the sensitivity of the receiver.

This allows for a much faster completion of all the chunks for all the nodes. As a
consequence of this advantage, the total update time is now 66,874 s. The second phase is
reduced from 120,316 (broadcast + unicast) to 50,777 s (only broadcast). Overall, the only
broadcast only takes 49% of the time required by the broadcast + unicast method, and it
induces a reduction to 22.7% of the time required by the only unicast method.

5.3. Effect of the Size of the Scenario

To illustrate the effect of the size of the scenario, this subsection reports the results of
a battery of simulations, with 10 nodes deployed in a circular area and a radius ranging
from 100 m to 2 km. A fixed frame size of 215 bytes is used. The results are represented in
terms of the total update time. Each of the presented values is the average of 40 simula-
tions, and 95% confidence intervals are also included.

The only unicast method results are shown in Figure 14a: the increase in the radius
results in a higher loss probability and an increase in the total time required for the update.

The benefit of the broadcast + unicast method is clear for short distances In Figure 14b,
for example, for 100 m, the time is reduced to 9.2% of that required by the only unicast
method. However, as the distance increases, it starts behaving similarly to the only unicast
method: for 2 km, the time required by the broadcast + unicast is 35% of that required by
the only unicast method. The reason is that the broadcast stage is not very successful, so
most of the chunks are sent in unicast frames.

Finally, the only broadcast method (Figure 14c) is quite similar to the broadcast + unicast
one for short distances (4.2% worse for 100 m), but it is able to maintain lower update
times for long distances: for example, for 2 km, the time required by the only broadcast
method is 65.7% of the time spent by the broadcast + unicast one.

Sensors 2024, 24, 2104

24 of 38

Time of fw update [Hours]

10?

10t

10°

Only Unicast Broadcast + Unicast Only Broadcast

10? 10?

Time of fw update [Hours]
Time of fw update [Hours]

ORORELEEP PRLPRLERLROP ORELREREL PR ERRLROREL OROERELREL LPERRLRLREP
A A O PA O o PR AR O O DA S o o A O S A0 0 o A DA O O DA O R A O O A o o A O RO RO O SR OO
SR ETEE SIS RS SR SIS S ETEE SIS
Maximum radius [m] Maximum radius [m] Maximum radius [m]
(a) (b) ()

Figure 14. Effect of the radius of the scenario on the total update time: (a) Only unicast method; (b)
Broadcast + unicast method; and (c) Only broadcast method. Note that the Y axis is in logarithmic scale.

5.4. Effect of Chunk Size

One question that can be considered is if there is an optimal value of the chunk size:
on the one hand, a small size is expected to reduce the loss probability of a frame; on the
other hand, a big size will reduce the overhead caused by LoRa headers. A battery of sim-
ulations is carried out in order to see whether this optimum exists. The simulations are
run in a scenario with 10 nodes, using two values for the maximum radius: 400 m and 2
km. The header of the frames is 23 bytes long, and the payload ranges between 16 and 192
bytes, considering that it is ciphered with AES in blocks of 16 bytes. Each test is run 40
times. The 95% confidence intervals are also included.

In the small scenario (400 m, Figure 15), the three methods show similar behavior:
the best option is always to use the longest payload (192 bytes plus the 23-byte header).
Again, the only unicast method is the slowest one and, in this case, the two other methods
present very similar results.

Things are different in the big scenario (2 km, Figure 16): as far as the only unicast
method is concerned, the graph shows that bigger payloads (bigger chunks of firmware)
are always beneficial for the update time. In this case, the best option is always to maxim-
ize the payload size.

However, in the case of the broadcast + unicast method, the tendency is just the oppo-
site: if 39-byte frames are used, the update time is 80.4% of the time required if 215-byte
frames are employed. This is caused by the high loss probability: if a frame is too long, the
probability of not receiving it correctly is higher.

Something similar happens with the only broadcast method: in this case, it is also better
to use small frames. In addition, there is a value of 135 bytes, which is the worst of all by
a small difference (roughly 4.5%).

Sensors 2024, 24, 2104 25 of 38

Only Unicast Broadcast + Unicast Only Broadcast

10°

10°

10°

102 10? 102

Time of fw update [Hours]
Time of fw update [Hours]
Time of fw update [Hours]

10! 10t

D P A D DO H DD DD O O DD POO DD DD O DA D PO G DD D
PP A D PPEPEE TP I A SRR I ARSI X PP AR PRE PP

NINTAT N
Frame |ength [Bytes Frame length [Bytes] Frame length [Bytes]

(@) (b) (c)

Figure 15. Effect of payload size on update time. Maximum radius 400 m: (a) Only unicast method; (b)
Broadcast + unicast method; and (c) Only broadcast method. Note that the Y axis is in logarithmic scale.

Only Unicast Broadcast + Unicast

108 105 Only Broadcast

10°

10? 10%

Time of fw update [Hours]
Time of fw update [Hours]
Time of fw update [Hours]

DO NN DO H DN D DO G O NS DO S D DD D DAY D DO S DD D DS
I A M AR SR A L S FH TR SR GRS I AR AR S A SR A RN SR A S L
Frame length [Bytes] Frame length [Bytes] Frame length [Bytes]

(a) (b) (c)

Figure 16. Effect of payload size on update time. Maximum radius 2 km: (a) Only unicast method; (b)
Broadcast + unicast method; and (c) Only broadcast method. Note that the Y axis is in logarithmic scale.

Sensors 2024, 24, 2104 26 of 38

Time of fw update [Hours]

Time of fw update [Hours]

5.5. Effect of the Number of Nodes

In this subsection, we introduce a series of tests designed to assess the impact of var-
ying the number of nodes updated. The frame size is fixed to 215 bytes, and two different
values for the distance are employed: 400 m (Figure 17) and 2 km (Figure 18).

Only Unicast Broadcast + Unicast Only Broadcast

10° 10° 10°

10? 107 102
10t 10t 10t
10° 10° 10°

S O > Q] S O QS O AN) N o Nl N Wl O S N O N
R A A S SR S R L S N R R A S S M
Number of nodes Number of nodes Number of nodes

(a) (b) ()

Figure 17. Effect of the number of nodes on update time. Maximum radius 400 m: (a) Only unicast
method; (b) Broadcast + unicast method; and (c) Only broadcast method. Note that the Y axis is in
logarithmic scale.

Time of fw update [Hours]
Time of fw update [Hours]

.;,’Q \‘VIQ
Only Unicast Broadcast + Unicast Only Broadcast

107 10° 103
B 107 102

10? 10t

10° 100

AT s . s
O A)

Time of fw update [Hours]
Time of fw update [Hours]

R I S R N
Number of nodes Number of nodes Number of nodes

(a) (b) ()

S T S T B P BRI
N R

Figure 18. Effect of the number of nodes on update time. Maximum radius 2 km: (a) Only unicast
method; (b) Broadcast + unicast method; and (c) Only broadcast method. Note that the Y axis is in
logarithmic scale.

Sensors 2024, 24, 2104

27 of 38

In the case of the only unicast method, it can be observed that the update time is
(roughly) proportional to the number of nodes (this cannot be directly observed in the
graphs, since they are in logarithmic scale).

The two methods that employ broadcast frames have a clear advantage, because a
high number of nodes will potentially receive the chunks at the same time. In the broadcast
+ unicast method, it can be observed that the initial broadcast round saves a high percent-
age of the update time: if the scenario is small (400 m, Figure 17), it only requires 9.4% of
the time required by the only unicast method for 10 nodes. When 150 nodes are used, the
time required by the broadcast + unicast method is only 0.88% of the time used by the only
unicast method (it is more than two orders of magnitude faster). If the scenario is higher
(2 km, Figure 18), the saving is smaller: the first broadcast round is less effective, so the
method behaves more closely to the only unicast approach. The time is 35% of the only
unicast method for 10 nodes and 29.17% for 150 nodes.

As far as the only broadcast method is concerned, if the scenario is small (400 m), the
results are slightly worse than those of the broadcast + unicast method: the initial broadcast
round is quite effective, so many nodes receive the vast majority of the chunks in that moment.
The only broadcast method is 4.2% worse for 10 nodes and 38.1% worse for 150 nodes.

However, the efficacy of the only broadcast method becomes distinctly evident in the
big scenario (2 km): as the number of nodes increases, so does the benefit with respect to
the broadcast + unicast method. With 10 nodes, the time is 65.7% of the one required by the
broadcast + unicast method. For 150 nodes, the time is only 13.3%. The reason is that, with
a higher number of nodes, the likelihood of a node receiving a chunk from any previous
transmissions increases significantly.

This fits with the theoretical results (see Figures 4 and 5): the only broadcast method is
less sensitive to the number of nodes than the broadcast + unicast method: it is able to main-
tain low update times, even for high numbers of devices.

5.6. Effect of the Number of Broadcast Rounds

In Section 4, when analyzing the two broadcast methods, we discussed the possibility
of having more than one initial broadcast round (B > 1) and concluded that, in some cases,
it could save update time, in particular if the number of nodes is high, and also if the loss
probability is significant. In this subsection, we present the results of a set of simulations
run in a big scenario (2 km) with different numbers of initial broadcast rounds (B ranging
from 1 to 15) and N =10 or 20 nodes.

As far as the broadcast + unicast method is concerned (Figure 19a), the case B = 0 is
equivalent to the only unicast method, as there is no initial broadcast round. The results in
this case show that be best option is B = 1: making more rounds at the beginning does not
improve the update time, which fits with the analytical results reported in Figure 4a.

Sensors 2024, 24, 2104

28 of 38

Time of Update [Hours]

Broadcast + Unicast Method Only Broadcast Method

— 2 — 20

107

Time of Update [Hours]

3 8 10 12 14 0 2 4 6 8 10 12 14
Number of Broadcast Rounds Number of Broadcast Rounds

() (b)

Figure 19. Effect of the number of initial broadcast rounds (B) on the update time, with 10 and 20
nodes, and a maximum radius of 2 km: (a) Broadcast + unicast method and (b) Only broadcast method.
Note that the Y axis is in logarithmic scale.

In the case of the only broadcast method (Figure 19b), the behavior with B =0 is exactly
the same as that with B =1, as explained in Section 4. It can be observed that this method
is faster than the broadcast + unicast method. The optimal number of initial broadcast
rounds is 1 in this case. When compared to Figure 5, it can be observed that the assump-
tions made in the analysis result in a slight underestimation of the update time: on the one
hand, some simplifications were made; on the other hand, each simulated node has a dif-
ferent distance to the gateway, so the loss probability is not the same for every node.

5.7. Discussion about the Methods

As a first conclusion, the analysis and the simulations show that the update times can
be significant, in some cases in the order of tens or hundreds of hours. This problem can
be mitigated by the selection of the best-suited method.

There is a big difference between the only unicast method and the two ones in which
broadcast transmission is employed. This fits with the results observed in the analytical
section (see Figures 4 and 5). The difference is usually significant: both broadcast methods
can perform the firmware exchange using between 10 and 35% of the time required by the
only unicast method. In small scenarios (up to 400 m), the broadcast methods are always
one order of magnitude faster, and in some cases, this advantage can be of two orders of
magnitude (150 nodes with a distance of 400 m). In big scenarios (2 km), the advantage of
the broadcast methods is reduced: the broadcast + unicast method is able to complete the
update in a time between 20 and 30% of the time, whereas the only broadcast method is
usually faster. For example, with 150 nodes, it only requires 12.5% of the time required by
the broadcast + unicast method. In conclusion, it seems clear that sending all the chunks in
broadcast frames is the best option, also considering that there is an optimal value of the
number of initial broadcast rounds. This also confirms the results obtained in the theoret-
ical part (Figures 4 and 5).

However, there are other considerations to be made, in order to establish the scenar-
ios in which these conclusions are fully valid.

Sensors 2024, 24, 2104

29 of 38

First, the two methods that send broadcast frames are valid if all the nodes run ex-
actly the same firmware. Otherwise, the broadcast should be performed in groups, as this
would reduce the benefit and complicate the implementation and control, as it requires a
tight control of what has been received by each node.

The broadcast methods could also be used in LoRaWAN scenarios. For example, the
firmware update presented in [8] showed an FUOTA protocol based on multicast frames.
Its limitation, which would be overcome by the methods proposed in the present paper,
is that it does not define a policy for retransmitting failed chunks. In contrast, our methods
could enhance the whole update process in terms of speed and efficiency.

Finally, it should be considered that, although the conclusion that broadcast is the
best option is valid in our case (LoRa with a constant spreading factor and channel band-
width), it may not be applicable in other scenarios: if technology allowing an adaptive rate
is employed, this can be different. For example, in 802.11, multicast frames, and by exten-
sion, broadcast ones, are typically transmitted at one of the Basic Rates, i.e., one of the rates
that the Access Point (AP) has designated as mandatory for all its clients to support if they
wish to connect [34]. This approach ensures that these frames are received by all clients,
as these frames are not acknowledged at the 802.11 layer. Therefore, there would be cases
in which the unicast option could be faster. As an example, if 10 nodes must receive new
firmware, sending it individually in unicast frames at 54 Mbps will be faster than sending
it once in broadcast frames at 1 Mbps.

6. Implementation and Tests with Real Hardware

In this section, we present some results of the OTA updates, measured in terms of
total required time. A real setup is employed with low-end IoT devices based on the ARM-
Cortex-M processor, a popular chip family which is optimized for low costs and energy
efficiency. In this case, the only unicast version of the OTA procedure is implemented: in
our work, there are nodes with different versions of the firmware because they have dif-
ferent sensors and implement various functions. The only unicast option is, therefore, im-
plemented, as it simplifies the management of the firmware versions.

In addition to the architecture of the system, we will detail the update procedure as
it happens in the node. In the last subsection, we will present some results of firmware
updates performed with real hardware in our lab. In this case, the results will not be pre-
sented in terms of the total update time: a real setup has some limitations that do not
appear in the simulation environment: number of devices, a high update time caused by
duty cycle limitations, and interference, etc.

6.1. System Architecture and Hardware Implementation of the System Elements

The system architecture corresponds to a typical one employed in this kind of sce-
nario. In contrast to LoRaWAN, in our case, the gateway implements some of the func-
tions: for example, it can receive commands from the nodes and forward them to other
ones, without requiring communication with the server. It has three main blocks (see Fig-
ure 20):

1. Node layer. The main element of the node is the Microchip WLR089UO module,
based on the ATSAMR34J18 LoRa integrated circuit. The PCB also includes a 32-bit
ARM Cortex-M0+ processor with 256 KB of Flash and 40 KB of SRAM. It runs a firm-
ware (roughly 150 KB) able to communicate with the gateway, and also with some
sensors able to measure different magnitudes. An external flash non-volatile memory
of 512 KB (SST25PF040C) is also added to the PCB via SPI protocol, which is the place
where the new firmware is allocated. They can be considered as Low-end Class 2 de-
vices [1]. No Operating System is used.

2. Network layer. The gateway is an SOM (System On Module) based on Microchip
ATSAMAS5d27-wlsom1, which runs an embedded Linux as Operating System. It in-
cludes a WLR089UO module connected via UART, working as the PAN Coordinator

Sensors 2024, 24, 2104 30 of 38

of the LoRa network. In addition, the SOM platform has an Ethernet and a Wi-Fi card,
which provide connectivity to the server. A Mosquitto MQTT broker provides con-
nectivity between the gateway and the server.

3. Server layer. It integrates different elements: a back-end server which interacts with
a database and a web application where the user can control the gateway and the
nodes to launch the OTA updates.

e N (\ (\

Web

%) E application
- LeRa ((('

.))) A ack en

Ol e o | e

nodes gateway t'\)/lr Sl;re -l; E database

Node layer Network layer Server layer
Figure 20. Architecture of the system.

The nodes are associated to the gateway following a star topology. In normal condi-
tions, the gateway periodically requests new samples from them. These samples may in-
clude the data measured by the DALI driver (temperature and power consumption, etc.)
or by other sensors attached to the ATEX luminaire. The format of the LoRa frames is
detailed in Appendix A. When an OTA update is to be performed, this process can be
interrupted to leave all the available airtime for the update.

Two photographs of the node, inside an ATEX enclosure, are presented in Figure 21:
the PCB, the DALI driver, the emergency module, and the backup batteries can be seen in
Figure 21a. A detail of the other side is presented in Figure 21b, where the LED stripe can
be observed, in addition to the enclosure of a presence node and the LoRa antenna.

(b)

Figure 21. Images of the node: (a) the side where the PCB, the DALI driver, and other elements are
placed; and (b) detail of the opposite side: LED stripe, LoRa antenna, and presence sensor enclosure.

Sensors 2024, 24, 2104

31 of 38

Two photographs of the gateway are presented in Figure 22. As can be observed, it in-
cludes the SOM at the bottom and two PCBs (for simultaneously operating in two channels).

(@) ®)

Figure 22. Images of the gateway: (a) the side where two PCBs are placed; and (b) opposite side:
two LoRa antennas.

6.2. Detailed Update Procedure

The memory map of the internal flash memory is shown in Figure 23. The bootloader,
stored at the beginning, handles the boot of the device. It is also responsible for receiving,
checking, and writing the updated firmware into the flash memory. Its size is 10 KB ap-
proximately.

0x000000

Bootloader

Shared between [
Bootloader and Application

Application

Figure 23. Memory map of the flash memory.

There is a 4 KB section of shared space between the bootloader and the application’s
firmware, allowing for communication between them. It is used for booting purposes,

Sensors 2024, 24, 2104

32 of 38

RSS! [dBm]

with three modes: (a) application booting, the normal one; (b) FUOTA booting, after an
FUOTA process; and (c) serial-update booting, after an update via serial port, which is only
used for updating the firmware of the LoRa PCB of the gateway.

During the FUOTA process, the application firmware handles the saving of the new
firmware into the external memory; later, it checks the correctness of the SHA256 hash. If
correct, it communicates to the bootloader that a new firmware has been stored by using
the shared section; finally, it resets the device. After the reset, the bootloader, running in
the FUOTA booting mode, checks the firmware stored on the external memory, and, if it is
correct, it overwrites the internal flash memory (also with SHA256 verification); finally,
the bootloader is launched again, this time in the application booting mode.

6.3. Tests of the Unicast Method for the OTA Update with Real Hardware

A laboratory setup us used to carry out several tests of the OTA update. As a first
example, Figure 24 shows the RSSI of each frame during a complete OTA procedure, with
812 chunks of 197 bytes each. The distance between the gateway and the node is 2 m,
without any obstacle between them. Both the gateway and the node are out from their
ATEX enclosures to reduce the signal attenuation.

Received frames from peer [ota.lab]

100

200 300 00 500 600 700 800
Seconds

Figure 24. Unicast OTA procedure, with a distance of 2 m and no obstacles: RSSI of each frame.
The red line corresponds to the sensitivity of the receiver.

In this case, considering that the tests are run in an isolated place, the frames are sent
in a continuous mode, not considering the 1% duty cycle. The total required time is 807 s
(roughly 13 min and a half).

As can be observed, the vast majority of the frames arrive on the first attempt (yellow
dots), although some arrive on the second one (green dots). The RSSI is always around
-49 dBm, with reasonably stable behavior.

One fact should be noted: in the simulation tests, frame loss occurred solely due to
the RSSI level falling beneath the sensitivity threshold of the receiver. In the tests with real
hardware, there may be other causes: interference with equipment in the same frequency
bands and limitations of the hardware, etc. This is the reason why some frames are lost in
spite of the big margin between the RSSI level (—49 dBm) and the sensitivity of the receptor
(=125 dBm).

Another test is carried out between a gateway in the lab and a node on the upper
floor. In this case, there is a significant attenuation level, mainly caused by the slab be-
tween the floors. As can be observed in Figure 25, the RSSI level ranges between -85 and
-110. In addition, it can be observed that many frames require two attempts, and some
even require three. However, the algorithm is solid and can complete the firmware trans-
fer in 2450 s (more than 40 min).

Sensors 2024, 24, 2104

33 of 38

RSSI [dBm]

Received frames from peer [ota.comedor3]

-1001

500 1000 1500 2000 2500
Seconds

Figure 25. Unicast OTA procedure with a significant distance and obstacles: RSSI of each frame.
The red line corresponds to the sensitivity of the receiver.

6.4. Discussion about the Implementation

Different lessons have been learned with the implementation, which will be dis-
cussed in this subsection. Regarding the steps that are common to the three methods, it is
important to remark that the size of the firmware must be kept low, for two reasons: first,
considering the tight constraints imposed by airtime limitations, the time required for up-
dating a project grows with the number of chunks; and second, the hardware of the IoT
device also poses some space constraints: the new firmware must fit in the internal flash
of the chip and also in the external flash non-volatile memory. These elements must be
well-dimensioned from the beginning, considering that a hardware modification is not an
option in many of these projects.

There is another related consideration: if the nodes have different connected elements
(e.g., different sensors), several versions of the firmware will be required. In these cases,
two options can be considered: first, compiling all the functionalities and using them se-
lectively; and second, using preprocessor directives and performing conditional compila-
tion. In principle, the best option for systems with resource constraints is the second one,
as the resulting binary is smaller. This is clearly the best option when the firmware is up-
dated using unicast frames. However, if a broadcast method is used, it could make sense
to compile all the functionalities and generate a single version of the firmware, as this
would increase the scalability.

The most critical moment of the firmware update is the flashing of the new version,
the copy of the binary between the two flash memories, and the reboot with the new code.
This must be performed very carefully with several mechanisms to ensure that no prob-
lem arises, as this would render the node inoperative.

Finally, one comment regarding the only unicast method: it has been shown that alt-
hough it is not as scalable as the other two, it performs well with a quite simple control
mechanism (“stop and wait”). This can be an advantage in noisy environments or if the
number of firmware versions is significant.

7. Conclusions and Future Research Directions

This paper presented, analyzed, and compared three methods for performing the
firmware exchange required by an Over The Air update of a project including a number
of IoT nodes connected via LoRa. After presenting the three methods, an analytical ex-
pression of the required update time was obtained for each of them.

The only unicast method is the one that privileges control versus the update time: it
allows an easier implementation and a simplified update, using a “stop and wait” policy.
If a time reduction is desired, it was shown that an initial broadcast round (or more than
one) and then a unicast completion of the missing chunks can significantly reduce the
required time: this is the broadcast + unicast method. Furthermore, an additional improve-
ment can be included, sending the missing chunks in broadcast frames as well (the only

Sensors 2024, 24, 2104

34 of 38

broadcast method). This can reduce the required time even more, especially if the distance
and the number of nodes are high. Finally, it was shown that there is an optimal number
of initial broadcast rounds.

The methods were simulated in ns-3 varying different parameters, namely, the dis-
tance between the gateway and the nodes, the number of nodes, and the size of the pay-
load. The advantages of each method were highlighted. The results showed that signifi-
cant time reductions can be obtained by using the proper method: in some cases, if the
number of nodes to be updated is high, the update time can be reduced by two orders of
magnitude. Finally, one of the methods was implemented in real hardware, and some tests
were run with it. The lessons learned from the implementation were explained in detail.

It appears evident that broadcasting as many frames as possible is the optimal choice
in our current scenario. This approach is particularly effective in the case of LoRa, where
a fixed rate is employed. However, it is important to note that this strategy may not be
suitable for all situations. For instance, if a project includes nodes with different firmware
versions, the benefits would be mitigated. Furthermore, when using technology that sup-
ports adaptive rates, the dynamics could change: if broadcast frames are transmitted at
lower rates, the unicast option can become potentially faster. Therefore, the choice of
broadcast or unicast should be performed carefully, based on the specific technology and
scenario at hand.

As far as future research directions are concerned, more scenarios can be simulated
and other methods can be implemented. For example, alternatives to the “stop and wait”
approach could be explored, i.e., “go back N” or even “selective ACK.” This would be
valid for the only unicast method and for the second stage of the broadcast + unicast method.
Furthermore, different combinations of the three methods could be explored.

More simulations could be performed, including interfering nodes. Other effects
could then be observed. For example, it is possible that the use of smaller chunks provides
a better performance in these cases.

Considering the increasing interest in the use of machine learning for IoT environ-
ments [35], it would also be interesting to have a tool that takes, as an input, the charac-
teristics of the scenario (the number of nodes, the groups of nodes that share the same
firmware version, the distances, the size of the firmware, the energy consumption, and the
background traffic, etc.) and generates an output specifying the best-suited method and
best parameters for performing a firmware update on it. This tool could be trained using
simulations or real results and improve its output automatically.

Although the present paper is focused on the firmware exchange stage, the security
of the previous stages could be improved, adding new layers based on blockchain [36].

In addition, the update methods could be tested in the context of IoT projects based
on other communication protocols such as NBIoT [37] and Zigbee [38], or even proprietary
ones such as Enhanced ShockBurst (ESB) running in nRF24L Series chips [39].

Finally, other KPIs apart from the update time could be estimated and compared,
such as the energy cost incurred by each method. Although energy is not a problem in our
specific use case, it can be relevant in other situations.

Author Contributions: Conceptualization, V.M., G.B. and].S.; methodology, V.M., G.B. and].S.;
software, V.M.; validation, V.M., G.B.,].S. and].M.; formal analysis, V.M., G.B. and].S.; investigation,
V.M., G.B,,].S. and].M.; resources, V.M., G.B,,].S. and].M.; data curation, V.M., G.B.,].S. and J.M.;
writing —original draft preparation, V.M., G.B. and].S; writing —review and editing, V.M., G.B.,].S.
and J.M.; visualization, V.M.; supervision,].S.; project administration, J.S. and].M.; funding acqui-
sition,].M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the project “Arquitectura inteligente para control de lu-
minarias” (00137209/ID1-20211320), supported by FONDO EUROPEO DE DESARROLLO REGIONAL
(FEDER) and Ministerio de Ciencia e Innovacién and CDTT; and by the program “I + D + I, Actuacién
AP01 Fomento de Inversiéon de I + D + I en el tejido productivo de Aragén,” (PAIP-23, line TDI-Feder
0313/2023/TDI) funded by FEDER, Government of Spain and Government of Aragon, 2023.

Sensors 2024, 24, 2104

35 of 38

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors want to acknowledge the support of Carlos Jiménez, who was in
charge of making the photographs of the node and the gateway. And the support of Carlos Gracia
and Cristina Ventura in the tests.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Format of the Frames of the Unicast Implementation
Appendix A.1. Format of the Wireless Frames

The format of the MiWi LoRa frame is shown in Figure Al. More details are given in
[4]. The fields are as follows:

e Frame Control: a bitmap specifying the type of packet, some transmission parameters,
and the lengths of other fields (e.g., the Destination Address Mode switches between 2-
and 8-byte addresses).

e Sequence number: it increases by one each time a datum or command frame is sent.

e Destination PanID: the identifier of the Personal Area Network. It should be noted that
all communication is intra-PAN, so the frames do not have a source PanID field.

e Destination address: an 8-byte-long address is used for unicast frames. For broadcast
messages, it will be fixed to OxFFFF (2 bytes). The Destination Address Mode is the field
that governs the length.

e Source address: it is always 8 bytes long.

e Payload: the format of the employed frame types is included in the next subsection.

e Frame Check Sequence: it verifies that the information is not damaged during transmission.

e ommmmm - Fommmmmmm - ommmmmo R oo Fommmme +
| 2 bytes | 1 byte | 2 bytes | 8 bytes | 8 bytes | variable | 2 bytes |

e it e R dommmmmnes Hommmmmmen e e T ommmmmeen +

Frame Sequence Destin. Destin. Source Payload Frame check
control number PanID address address sequence

Figure A1. Format of the MiWi LoRa frame.

As can be observed, if a unicast Destination Address (8 bytes) is used, the total over-
head will be 23 bytes (header plus FCS).

Appendix A.2. Format of the Payload

This subsection details the format of the payload of the frames used in the OTA ex-
change of the unicast implementation. Considering that the shared medium (i.e., the air)
is a scarce resource, the messages are optimized to reduce the header as much as possible.
For that reason, different message types are defined depending on the size of the FRAG-
MENT NUMBER field. As a result, one byte will be saved in the length of the first 256
fragments.

Each frame has an initial field called TYPE that specifies the kind of message. It
should be noted that the TYPE field has two different numberings: one for the frames sent
by the gateway, and one for the frames sent by the node. Some frames have other fields
(e.g, FRAGMENT NUMBER).

Appendix A.3. Frames Sent by the Gateway, Containing a Binary Fragment

e OTA BINARY FRAGMENT (FRAGMENT NUMBER expressed in 1 byte), TYPE =
0x01. An example is shown in Figure A2.

e OTABINARY LAST FRAGMENT (FRAGMENT NUMBER expressed in 1 byte), TYPE
= 0x04. It is similar to the previous one, but it is employed for the last fragment.

e OTA BINARY FRAGMENT (FRAGMENT NUMBER expressed in 2 bytes), TYPE =
0x02. An example is shown in Figure A3.

Sensors 2024, 24, 2104

36 of 38

e OTA BINARY LAST FRAGMENT (FRAGMENT NUMBER expressed in 2 bytes),
TYPE = 0x05.

e OTA BINARY FRAGMENT (FRAGMENT NUMBER expressed in 3 bytes), TYPE =
0x03. It will not be necessary unless there are more than 65,536 firmware chunks.

e OTA BINARY LAST FRAGMENT (FRAGMENT NUMBER expressed in 3 bytes),

TYPE = 0x06.
N it e et +
|eeeesesl| ox3F | |
e e e it +
TYPE FRAGMENT <-------=-oooomomme FIRMWARE CHUNK ==--=-=-=-ococoooaoooo >
NUMBER

Figure A2. Format of the payload of the OTA BINARY FRAGMENT (FRAGMENT NUMBER ex-
pressed in 1 byte) frame, sent by the gateway.

- e R et +

|eeeeeeien| ©x02A1 | |

ommmmen mmmmmmm e R e T +
TYPE FRAGMENT NUMBER <-------------------- FIRMWARE CHUNK --------------------- >

Figure A3. Format of the payload of the OTA BINARY FRAGMENT (FRAGMENT NUMBER ex-
pressed in 2 bytes) frame, sent by the gateway.

Appendix A.4. Frames Sent by the Gateway, Containing a Checksum Fragment
In this case, the fragments of the checksum can always be expressed in 1 byte. These
are the two frame types:

. OTA CHECKSUM FRAGMENT (FRAGMENT NUMBER expressed in 1 byte), TYPE
= 0x07. An example is shown in Figure A4.
. OTA CHECKSUM LAST FRAGMENT (FRAGMENT NUMBER expressed in 1 byte),

TYPE = 0x08.
e +-------- B ettt e e e +
|eeeen111| exel |
+-------- +-------- B e e +
TYPE FRAGMENT <-------nmmmmmommmmn FIRMWARE CHUNK - =-=-=====-mmmmmmemm- >
NUMBER

Figure A4. Format of the payload of the OTA CHECKSUM FRAGMENT frame sent by the gateway.

Appendix A.5. Other Control Frames Sent by the Gateway

e OTA STATUS REQUEST, TYPE = 0x09. An example is shown in Figure A5.

e OTA FLASH NEW VERSION, TYPE = 0x0A. The gateway tells the node to flash the
new firmware that is stored in its flash memory. An example is shown in Figure A6.

e OTA RESET REQUEST, TYPE = 0x0B. The gateway tells the node to set to 0 the coun-
ters of binary and checksum fragments. The node must answer with an OTA RESET
CONFIRMED message.

Figure A6. Format of the payload of the OTA FLASH NEW VERSION frame sent by the gateway.

Appendix A.6. Control Frames Sent by the Node

e OTA RESET CONFIRMED, TYPE = 0x0B. The node sends it as a response to the OTA
RESET REQUEST. An example is shown in Figure A7.

Sensors 2024, 24, 2104 37 of 38

Figure A7. Format of the payload of the OTA RESET CONFIRMED frame sent by the node.

References

1. Ojo, M.O,; Giordano, S.; Procissi, G.; Seitanidis, I.N. A Review of Low-End, Middle-End, and High-End Iot Devices. IEEE Access
2018, 6, 70528-70554. https://doi.org/10.1109/ACCESS.2018.2879615.

2. Moran, B.; Brown, D.; Meriac, M.; Tschofenig, H. A Firmware Update Architecture for Internet of Things. Request for Comments
9019, 2021. Available online: https://www.rfc-editor.org/rfc/rfc9019 (accessed on 6 March 2024).

3. DALI Alliance, Introducing DALI. Available online: https://www.dali-alliance.org/dali/ (accessed on 5 December 2023).

4. Microchip, MiWi Software Design Guide. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/MiWi-Soft-
ware-Design-Guide-User-Guide-DS50002851B.pdf (accessed on 10 January 2024).

5. Microchip, Enable Easy to Use P2P Protocol for Long-Range & Low Power Applications on SAM R34 LoRa Technology ICs and
WLR089UO Module. Available online: https://github.com/MicrochipTech/atsamr34_long_range_p2p (accessed on 5 December
2023).

6. The LoRa Alliance, What Is LoRaWAN® Specification. Available online: https://lora-alliance.org/about-lorawan/ (accessed on 10
January 2024).

7. The Things Network. LoORaWAN Overview. Available online: https://www.thethingsnetwork.org/docs/lorawan/ (accessed on
10 January 2024).

8. Abdelfadeel, K;; Farrell, T.; McDonald, D.; Pesch, D. How to Make Firmware Updates over LoRaWAN Possible. In Proceedings
of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM),
Cork, Ireland, 31 August-3 September 2020; pp. 16-25. https://doi.org/10.1109/WoWMoM49955.2020.00018.

9. The Things Network. Duty Cycle. Available online: https://www.thethingsnetwork.org/docs/lorawan/duty-cycle/ (accessed on
1 December 2023).

10. Wang, Q.; Zhu, Y.; Cheng, L. Reprogramming wireless sensor networks: Challenges and approaches. IEEE Netw. 2006, 20, 48—
55. https://doi.org/10.1109/MNET.2006.1637932.

11. Villegas, M.M.; Orellana, C.; Astudillo, H. A study of over-the-air (OTA) update systems for CPS and IoT operating systems. In
Proceedings of the 13th European Conference on Software Architecture—Volume 2 (ECSA’19), Paris, France, 9-13 September
2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 269-272. https://doi.org/10.1145/3344948.3344972.

12. de Sousa, M.].B.; Gonzalez, L.F.G.; Ferdinando, E.M.; Borin, J.F. Over-the-air firmware update for IoT devices on the wild. In-
ternet Things 2022, 19, 100578. https://doi.org/10.1016/j.i0t.2022.100578.

13. Carlson, S. An Internet of Things Software and Firmware Update Architecture Based on the SUIT Specification. Master’s Thesis,
KTH Royal Institute of Technology, Stockholm, Sweden, 2019. Available online: https://urn.kb.se/re-
solve?urn=urn:nbn:se:kth:diva-254275 (accessed on 3 January 2024).

14. Contiki-NG, the OS for Next Generation IoT Devices. Available online: https://www.contiki-ng.org/ (accessed on 3 January
2024).

15. Teck Khieng, D.H.; Xie, Y.Z.; Zhang, J.C.; Huang, N.F. A Long Distance Low Bandwidth Firmware Update process for
LPWAN —Taking LoRaP2P+ as example. In Proceedings of the 2023 International Conference on Information Networking
(ICOIN), Bangkok, Thailand, 11-14 January 2023; pp. 646-651. https://doi.org/10.1109/ICOIN56518.2023.10048943.

16. Badawy, W.; Ahmed, A.; Sharf, S.; Elhamied, R.A.; Mekky, M.; Elhamied, M.A. On Flashing Over The Air “FOTA” for IoT
Appliances—An ATMEL Prototype. In Proceedings of the 2020 IEEE 10th International Conference on Consumer Electronics
(ICCE-Berlin), Berlin, Germany, 9-11 November 2020; pp. 1-5. https://doi.org/10.1109/ICCE-Berlin50680.2020.9352203.

17. Heeger, D.; Garigan, M.; Eleni Tsiropoulou, E.; Plusquellic, J. Secure LoRa Firmware Update with Adaptive Data Rate Tech-
niques. Sensors 2021, 21, 2384. https://doi.org/10.3390/s21072384.

18. Riggs, H.; Tufail, S.; Parvez, I.; Tariq, M.; Khan, M.A.; Amir, A.; Vuda, K.V,; Sarwat, A.I. Impact, Vulnerabilities, and Mitigation
Strategies for Cyber-Secure Critical Infrastructure. Sensors 2023, 23, 4060. https://doi.org/10.3390/s23084060.

19. Klaver, M.; Luiijf, E. Analyzing the cyber risk in critical infrastructures. In Issues on Risk Analysis for Critical Infrastructure Protec-
tion; IntechOpen: London, UK, 2021.

20. Bakhshi, T.; Ghita, B.; Kuzminykh, I. A Review of IoT Firmware Vulnerabilities and Auditing Techniques. Sensors 2024, 24, 708.
https://doi.org/10.3390/s24020708.

21. Bauwens, J.; Ruckebusch, P.; Giannoulis, S.; Moerman, I.; Poorter, E.D. Over-the-Air Software Updates in the Internet of Things:
An Overview of Key Principles. [IEEE Commun. Mag. 2020, 58, 35-41. https://doi.org/10.1109/MCOM.001.1900125.

22. Crowther, K.G.; Upadrashta, R.; Ramachandra, G. Securing Over-the-Air Firmware Updates (FOTA) for Industrial Internet of
Things (IIOT) Devices. In Proceedings of the IEEE International Symposium on Technologies for Homeland Security (HST),
Boston, MA, USA, 14-15 November 2022; pp. 1-8. https://doi.org/10.1109/HST56032.2022.10025441.

23. Catuogno, L., Galdi, C. Secure Firmware Update: Challenges and Solutions. Cryptography 2023, 7, 30.

https://doi.org/10.3390/cryptography7020030.

Sensors 2024, 24, 2104 38 of 38

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Lee, H.C.; Ke, K.H. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation.
IEEE Trans. Instrum. Meas. 2018, 67, 2177-2187. https://doi.org/10.1109/TIM.2018.2814082.

Manzoni, P.; Merzougui, S.E.; Palazzi, C.E.; Pozzan, P. A Resilient LoRa-Based Solution to Support Pervasive Sensing. Electronics
2023, 12, 2952. https://doi.org/10.3390/electronics12132952.

ns-3, a Discrete-Event Network Simulator for Internet Systems. Available online: https://www.nsnam.org/ (accessed on 10 Jan-
uary 2024).

Charilaou, C.; Lavdas, S.; Khalifeh, A.; Vassiliou, V.; Zinonos, Z. Firmware Update Using Multiple Gateways in LoRaWAN
Networks. Sensors 2021, 21, 6488. https://doi.org/10.3390/s21196488.

Magrin, D.; Capuzzo, M.; Zanella, A. A Thorough Study of LoRaWAN Performance under Different Parameter Settings. [EEE
Internet Things . 2019, 7, 116-127. https://doi.org/10.1109/JI0T.2019.2946487.

Reynders, B.; Wang, Q.; Pollin, S. A LoRaWAN module for ns-3: Implementation and evaluation. In Proceedings of the Work-
shop ns-3, Surathkal, India, 13-14 June 2018; pp. 61-68. https://doi.org/10.1145/3199902.3199913.

The Things Network. Device Classes. Available at https://www.thethingsnetwork.org/docs/lorawan/classes/ (accessed on 3 Jan-
uary 2024).

Sundaram, J.P.S.; Du, W.; Zhao, Z. A survey on lora networking: Research problems, current solutions, and open issues. IEEE
Commun. Surv. Tutor. 2019, 22, 371-388. https://doi.org/10.1109/COMST.2019.2949598.

Ingabire, W.; Larijani, H.; Gibson, R.M. Performance evaluation of propagation models for LoRaWAN in an urban environment.
In Proceedings of the International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul,
Turkey, 12-13 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1-6. https://doi.org/10.1109/ICECCE49384.2020.9179234.

Tiwari, K.K,; Yerra, R.V.P. Wireless link Analysis of LoRa in vegetation and Semi urban scenarios. In Proceedings of the Second
International Conference on Interdisciplinary Cyber Physical Systems (ICPS), Chennai, India, 9-10 May 2022; IEEE: Piscataway,
NJ, USA, 2022. https://doi.org/10.1109/ICPS55917.2022.00022.

Coronado, E.; Riggio, R.; Villalén, J.; Garrido, A. Joint Mobility Management and Multicast Rate Adaptation in Software-De-
fined Enterprise WLANSs. IEEE Trans. Netw. Serv. Manag. 2018, 15, 625-637. https://doi.org/10.1109/TNSM.2018.2798296.
Heidari, A.; Jafari Navimipour, N.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on
new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089.
https://doi.org/10.1016/j.scs.2022.104089.

Anastasiou, A.; Christodoulou, P.; Christodoulou, K.; Vassiliou, V.; Zinonos, Z. IoT Device Firmware Update over LoRa: The
Blockchain Solution. In Proceedings of the 2020 16th International Conference on Distributed Computing in Sensor Systems
(DCOSS), Marina del Rey, CA, USA, 25-27 May 2020; pp. 404-411. https://doi.org/10.1109/DCOSS49796.2020.00070.
Mahfoudhi, F.; Sultania, A.K.; Famaey,]J. Over-the-Air Firmware Updates for Constrained NB-IoT Devices. Sensors 2022, 22,
7572. https://doi.org/10.3390/s22197572.

Zhang, X,; Tang, P.; Qu, T.; Liu, Y. Remote Online Firmware Upgrade System for Embedded Devices based on ZigBee. In Pro-
ceedings of the 2021 International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huai-
hua, China, 10-12 December 2021; pp. 55-60. https://doi.org/10.1109/ICEITSA54226.2021.00020.

Yan, S.-R.; Pirooznia, S.; Heidari, A.; Navimipour, N.J.; Unal, M. Implementation of a Product-Recommender System in an IoT-
Based Smart Shopping Using Fuzzy Logic and Apriori Algorithm. IEEE Trans. Eng. Manag. 2024, 71, 4940-4954.
https://doi.org/10.1109/TEM.2022.3207326.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

