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Abstract 
We analyze the significance of supersymmetry in two topological models and 
the standard model (SM). We conclude that the two topological field theory 
models favor hidden supersymmetry. The SM superpartners, instead, have 
not been found. 
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1. Introduction 

Matter in two topological field theory scenarios goes through one or two phase 
transitions between Planck time and the present time. We analyze these two 
models to determine what happens to supersymmetry (SUSY) at laboratory 
energies provided it is valid, say, at the grand unified (GUT) scale. The point of 
this note is to provide evidence that two attitudes, no supersymmetry and very 
heavy superpartners, are not justifiable in the light of present experimental 
measurements. For the standard model our argument is based on improved 
coupling constant behavior in grand unified theories. 

The article is organized as follows. In Section 2 we consider some general fea-
tures, like the three different phases of the universe, the phase transitions and 
motivation for preons (called here chernons). To indicate the nature of problem 
of phase I matter, two models of topological gravity are briefly reviewed in Sec-
tion 3. Comparison of the present scenario and standard model inflation is made 
in Section 4. Conclusions and outlook are given in Section 5. An Appendix with 
Table 2 of CS particle—SM particle correspondence is provided. 

2. The Phases of the Evolving Universe 

The common view is that as we go far enough back in time in the contracting 
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universe we will reach a point, defined here as time t = t0, or just t = 0, (see Fig-
ure 1) where the degrees of freedom that our universe is made of may get re-
placed by other degrees of freedom [1]. Somewhat different kind of transition 
appears in the scenario of [2] [3]. At energy scale 10 16~ 10 -10crΛ  GeV new 
topological degrees of freedom replace the standard model particles. 

We start with supersymmetric topological matter in the early phase I and to 
move towards phase II, where SUSY is a priori not guaranteed to exist. The fate 
of SUSY is determined at t~0 when both time derivatives of I

mρ  and II
mρ  are 

non-zero, as in Figure 1 green area. 
We assume no observables of the topological phase I will distinguish positions, 

so the metric should be homogeneous, i.e. a constant curvature metric. The time 
direction is picked out as an invariant concept in both phases. We would like to 
determine the consequences of this for the geometry in phase I as viewed from 
the frame II perspective. The most general metric with these symmetries is  

( )
2

2 2 2 2 2
2

dd d d
1

rs t a t r
kr

 
= − + + Ω − 

                (2.1) 

where 1,0, 1k = + −  for positive, flat or negative curvature spaces. As discussed 
in subsection 3.1, the solutions to BRST [4] [5] invariant configurations in 4D 
topological gravity are conformally flat, self-dual geometries, which have zero 
Weyl tensor 

0ABCDW =                           (2.2) 

This condition by itself allows all three possibilities for k. We will view time as 
a continuous element between phase I and phase II. Thus, a natural assumption 
is that the metric can be expressed as a flat metric up to a conformal factor that 
is only dependent on time, which is the only duality invariant coordinate. This is 
equivalent to having an FLRW metric (2.1) with 0k =  

( )( )2 2 2d d d di is a x xη η= − +                    (2.3) 

Physics in phase II after reheating is well described by a thermal distribution 
of SM matter (and the dark components). The notion of time is common to both 
phases of the universe. This leads to energy being common to both phases. In 
addition there are weak long range correlations that originate from phase I 
modes that are non-local in phase II. 

3. Topological Models in Phase I 
3.1. General Properties of Topological Models 

In topological models, the horizon problem is solved simply because the locality, 
relevant in our universe in phase II, is not natural in phase I [1]. The light modes 
of phase I are non-local as viewed from phase II. A known example is the 
winding modes of the string gas cosmology [6]. Fluctuations visible in phase II 
are not part of the degrees of freedom of phase I. 

How does phase I look from the perspective of phase II [1]? In phase I there 
should not be any position dependent observables. Let us assume the state in  
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Figure 1. Transition from phase I to II in the universe proceeds 
by the conversion of matter made up from the degrees of free-
dom of frame (blue) to those of our T-dual frame (red). In our 
model the time t = 0 corresponds to energy scale crΛ . The 
small green area around t~0 is the new second topological 
phase O, to be discussed in subsection 3.3. In the other topo-
logical model the point t = 0 is near Planck scale. In the SM t = 
0 corresponds the GUT scale. (Figure 1, Figure 2, and 4 are 
from [1] with permission.) 

 
phase I is given by I . We would expect n-point correlations of physical ob-
servables in this state 

( ) ( ) 11 , ,
1

n ni i ii
nI x x I A= 

                  (3.1) 

to be position independent when all 1, , 0ni i
j A∂ = . This is a key feature of a to-

pological quantum field theory. While we view phase I as a topological phase 
from the perspective of frame II it is curious that the reverse is also true: phase II 
can be viewed from the perspective of frame I as a topological theory [1]. This is 
illustrated in Figure 2. 

In topological field theories observables must be a measure of global features. 
Consequently, there are no propagating signals. This property is achieved in the 
Becchi-Rouet-Stora-Tyutin (BRST) [4] [5] formalism by the presence of a 
Grassmann odd charge operator Q. 

This operator Q is nilpotent, hermitian, and it commutes with the Hamilto-
nian, [ ], 0H Q = . The action of the charge operator on fields Φ  is given by 

[ ],i Qδ εΦ = Φ                           (3.2) 

where ε  is a Grassmann parameter, a supernumber that anticommutes with all 
other Grassmann variables. Q is also the Noether charge for the BRST symmetry. 
The action combines together bosonic and fermionic fields in a way similar to 
the pairing in supersymmetric theories. Physical states in the Hilbert space are 
Q-cohomology classes: these states are Q-closed (i.e. ψ  satisfying 0Q ψ = ) 
modulo Q-exact (i.e. ψ  such that Qψ χ=  for some χ ). This latter 
requirement implies that the fermionic partners of bosonic fields are in fact 
ghosts so that all degrees of freedom cancel in the BRST sense. 
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Figure 2. The degrees of freedom making up phase I are absent in a low energy descrip-
tion of phase II. Therefore the former appears topological from the point of view of the 
latter. This relation is also true with the roles of phase I and II interchanged. 

 
If we assume that the vacuum is Q-invariant, then Q-exact operators have a 

vanishing expectation value [ ], 0Q = . In topological field theories, the 
energy-momentum tensor (given by the variation of the action with respect to 
the metric) is Q-exact, i.e. { },T Qαβ αβλ=  for some λ . This implies that the 
partition function is invariant under metric variations 

( ) { }
{ }

e e ,

, 0

S SZ S Q g g

Q g g

αβ
αβ

αβ
αβ

δ δ δ λ

δ λ

− −= Φ − = − Φ

= − =

∫ ∫ ∫

∫

 
 

provided the integration measure is BRST invariant. 
Another way to illuminate background independence in a topological theory 

in general is based on calculating Wilson loops in 3D Chern-Simons (CS) theory 
[7]1. Wilson loops give a natural class of gauge invariant observables that do not 
require a choice of metric. Let C be an oriented closed curve in M. Intrinsically C 
is simply a circle, but the topological classification of embeddings of a circle in 
M may be complicated, as we can imagine in Figure 3. Let R be an irreducible 
representation of G. One then defines the Wilson loop ( )RW C  to be the fol-
lowing functional of the connection iA . One computes the holonomy of iA  
around C, getting an element of G that is well-defined up to conjugacy, and then 
one takes the trace of this element in the representation R. Thus, the definition is 

( ) exp d i
R R iC

W C Tr P A x= ∫                     (3.3) 

The crucial property of this definition is that there is no need to introduce a 
metric, so general covariance is maintained. 

Consider the partition function Z, defined as 

( ) ( )exp Ri i
i

Z i W C= ∏∫                   (3.4) 

where   represents Feynman integral over all gauge orbits, the iC  are 
non-intersecting knots and iR  representation assigned to iC . The partition 
function Z is thus automatically independent of any background metric. How-
ever, there is still a question of whether the theory contains local excitations. 

3.2. Fang and Gu’s Topological Gravity 

We consider the topological theory by Fang and Gu [8] [9] [10]. The topological 
quantum field theory (TQFT) approach can not be easily generalized into 3 + 1D 
because consistency with Einstein’s gravity in 3 + 1D contains propagating a  

 

 

1CS theory is discussed later in Section 3.3. 
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Figure 3. A trefoil knot in 3D space. The curve 
has orientation, clockwise or anticlockwise. 

 
mode, the graviton. Therefore it is obviously not a case for TQFT in the usual 
sense. Secondly, there is no Chern-Simons like action in 3 + 1D. Fang and Gu 
have shown that Einstein gravity might emerge by adding a topological mass 
term of the 2-form gauge field. Physically, such a phenomenological theory 
might describe a loop condensing phase, i.e. flux lines in the context of gauge 
theory. 

Due to the recent developments in the classification of topological phases of 
quantum matter in higher dimensions [11] [12] [13] [14] [15], new types of 
TQFT have been discovered in 3 + 1D to describe the three-loop-braiding statis-
tics. It is argued that such types of TQFT are closely related to Einstein gravity 
and that gravitational field will disappear at extremely high energy scale. 3 + 1D 
quantum gravity would be controlled by a TQFT renormalization group fixed 
point. At intermediate energy scales, Einstein gravity and classical spacetime 
would emerge via loop (flux lines) condensation of the underlying TQFT. The 
uncondensed loop-like excitation is a natural candidate of dark matter. Such 
kind of dark matter will not contribute scalar curvature but will be a direct 
source of torsion. Normal matter, like Dirac fermions, will not contribute to tor-
sion. 

Let us begin with the topological gravity theory in 3 + 1D [16]. Consider the 
following topological invariant action 

31 2

4 2 2
ab c d ab a

top abcd ab a
kk kS R e e B R B Tε= ∧ ∧ +

π π π
∧ + ∧∫ ∫ ∫         (3.5) 

where e is the tetrad field, R is the curvature tensor, T is the torsion tensor and 
,B B  are 2-form gauge fields. Like in the CS theory, the values of ik  are quan-

tized. Without loss of generality, the following values can be chosen 1 2 2k k= =  
and 3 1k =  for convenience. The above action is invariant under the following 
(twisted) 1-form and 2-form gauge transformations, respectively:  

a a ae e Df→ +  

( )3

22ab ab a b b a
kB B B f B f
k

→ − −   

1

3

,b cd
a a abcd

kB B f R
k
ε→ −                      (3.6) 
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and 

,ab ab abB B Dξ→ +                       (3.7) 

a a aB B Dξ→ +    

( )3

2

.
2ab ab a b b a
kB B e e
k

ξ ξ→ − ∧ − ∧                 (3.8) 

Such an action can be regarded as the non-Abelian generalization of AAdA + 
BF type TQFT [17] [18] [19] of the Poincare gauge group. Physically, it has been 
shown that such kind of TQFT describes the three-loop-braiding statistics [20] 
[21]. As a TQFT, the action Equation (3.5) is a super-renormalizable theory. The 
coefficient quantization and canonical quantization of such a theory are dis-
cussed in [9]. 

SUSY generalization of 3 + 1D topological gravity is discussed in [8]. One 
needs to introduce the gauge connection of super Poincare group and write the 
action as ( ) ( )sTr A A dA A A sTr B F∧ ∧ + ∧ + ∧  ∫ ∫ . For the 1N =  case, one 
can express A, B and F as follows 

1
2

ab a
ab aA M e P Qα

µ µ µ µαω ψ≡ + +  

1
2

ab a
ab aB B M B P Qα

µν µν µν µνα≡ + + B  

1
2

ab a
ab aF R M T P R Qα

µν µν µν µνα≡ + +                (3.9) 

Here Rµνα  is the super curvature tensor defined as R D Dµνα µ να ν µαψ ψ= −  
where Dµ  is the covariant derivative for spinor fields. Fermionic loops (flux 
lines) cannot be condensed. Therefore supersymmetry breaking happens at very 
high energy scale when bosonic loops condense and classical space-time emerges. 
More details are presented in [10]. 

Although the total action S is super-renormalizable, it does not imply 
UV-complete quantum gravity theory due to explicit breaking of 2-form gauge  

symmetries by the 
2

ab
abS B Bθ

θ
π

= − ∧∫  term. The algebraic tensor 2-category  

theory [22] [23] may provide an equivalent UV-complete description for a to-
pological quantum gravity theory in 3 + 1D. 

In [10] the authors give a more profound treatment. It includes a deformation 
parameter λ  which represents the bare cosmological constant term. It plays a 
crucial role in this scenario. 0λ =  corresponds to a trivial universe with va-
nishing Riemann curvature, while 0λ ≠  corresponds to a non-trivial universe 
where Einstein gravity arises at low energy. In this scenario SUSY does not sur-
vive at energy scale below Planck energy. 

3.3. Chern-Simons Model in Phase O 

We disclose arguments for preons. The distinctive feature of our preons (called 
here chernons) is the treatment of SUSY as unbroken global symmetry with the 
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particles in supermultiplets. The chiral and vector supermultiplets for three col-
ors are given in Table 1 [2]. 

Chernon interactions are 2 + 1 dimensional inside a 3 + 1D world. Chern- 
Simons-Maxwell (CSM) interaction models have been studied in condensed 
matter physics, e.g. [24] [25] [26]. In this note we extrapolate the CSM model a 
long way to particle physics phenomenology at high energy in the early un-
iverse. 

We construct the visible matter of two fermionic chernons: one charged m−, 
one neutral m0, and the photon. The Wess-Zumino [27] type action [2] is su-
persymmetric as well as C symmetric. The chernons have zero (or very small) 
mass. The chernon baryon (B) and lepton (L) numbers are zero. Given these 
quantum numbers, quarks consist of three chernons, as indicated in Table A12. 

In [26] a 2 + 1 dimensional Chern-Simons (CS) action [7] [28] was used to 
derive chernon-chernon interaction, which turns out to trigger the fist phase 
transition between O and II. In 2 + 1 dimensions, a fermionic field has its spin 
polarization fixed up by the sign of mass [29] [30] [31] [32]. The model includes 
two positive-energy spinors (two spinor families) and a complex scalar ϕ . The 
fermions obey Dirac equation, each one with one polarization state according to 
the sign of the mass parameter. 

The chernon-chernon scattering amplitude in the non-relativistic approxima-
tion is obtained by calculating the t-channel exchange diagrams of the Higgs 
scalar and the massive gauge field. The propagators of the two exchanged par-
ticles and the vertex factors are calculated from the action [26]. 

The gauge invariant effective potential for the scattering considered is ob-
tained in [33] [34] 

( ) ( ) ( )
22 2

MCS 0 12
11 1

2 2ch ch

e eV r K r l rK r
m m r
θ θ θ θ

θπ π
   

= − + − −     
  

   (3.10) 

where ( )0K x  and ( )1K x  are the modified Bessel functions and l is the angu-
lar momentum ( 0l =  in this note). In (3.10) the first term [ ] corresponds to 
the electromagnetic potential, the second one { }2 contains the centrifugal barrier 
( 2l mr ), the Aharonov-Bohm term and the two photon exchange term. 

One sees from (3.10) the first term may be positive or negative while the 
second term is always positive. The function ( )0K x  diverges as 0x →  and 
approaches zero for x →∞  and ( )1K x  has qualitatively similar behavior. For 
our scenario we need negative potential between equal charge chernons. Being 
embarrassed of having no data points for several parameters in (3.10) we can 
give one relation between these parameter values for a binding potential. We 
must require the condition3 

chmθ                            (3.11) 

 

 

2There are more combinations of states like those containing an m+ m− pair. This state annihilates 
immediately into other chernons, which form later leptons and quarks. 
3For applications to condensed matter physics, one must require emθ  , and the scattering poten-
tial given by (3.10) then comes out positive [26]. 

https://doi.org/10.4236/jhepgc.2024.102038


R. Raitio 
 

 

DOI: 10.4236/jhepgc.2024.102038 616 Journal of High Energy Physics, Gravitation and Cosmology 
 

Table 1. The particle s− is a neutral scalar particle. The particles m−, m0 are charged and 
neutral, respectively, Weyl spinors. The a is axion and n axino. m0 is color singlet particle 
and γ is the photon. mC and gC (C = R, G, B) are zero charge color triplet fermion and 
boson, respectively. 

Multiplet Particle, Sparticle 

chiral multiplets spins 0, 1/2 s−, m−; a, n 

vector multiplets spins 1/2, 1 m0, γ; mC, gC 

 
The potential (3.10) also depends on v2, the vacuum expectation value, and on 

y, the parameter that measures the coupling between fermions and Higgs scalar. 
Being a free parameter, v2 indicates the energy scale of the spontaneous break-
down of the U(1) local symmetry. 

A summary of the three phases and their properties is given in Table 2. 

4. Topological Early Phases versus Inflation 

In this section we compare and contrast the topological scenarios with the infla-
tionary scenario. There are a number of common features in the two approaches 
as can be seen in Figure 4. 

The end result for both is the FLRW scenario. Both of them involve a kind of 
phase transition. In the case of inflation the transition is marked by the end of 
the early expansion and beginning of reheating as the inflaton settles to the 
minimum of the potential. In the case of the topological scenario the phase tran-
sition takes place by a topology and symmetry change process [35] [36]. In both 
scenarios we have a nearly homogeneous thermal initial condition for FLRW in 
phase II. In both scenarios the homogeneity of space is described by a novel 
phenomenon: in the inflationary scenario by the exponential expansion of the 
space and in the topological phase by the fact that gravity is described by a topo-
logical theory. In the inflationary scenario the fluctuations of the inflaton field 
leads to scalar fluctuation, whereas in the topological phase which involves only 
global/zero modes and only through scale anomalies do we get fluctuations in 
the otherwise thermal background. Detailed properties and predictions of the 
topological inflation are presented in [1]. Briefly said, processes take place as 
well as in other successful models. After reheating everything goes as in the 
standard model of cosmology. 

5. Conclusions 

There are three possibilities for the fate of low energy supersymmetry: no SUSY 
at all, highly broken SM SUSY, and hidden SUSY (in chernons or in some other 
way). We consider the first case unlikely. The second case has been studied tho-
roughly with certain success but the SM superpartners are still missing. The 
third case, described above, agrees with the standard model particle spectrum 
and provides an answer to matter-antimatter asymmetry by the mechanism pre-
sented in [3]. 
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Table 2. Development of the universe from phase I to phase O and finally to phase II. 
The phase O’s role is to hide supersymmetry, create SM matter, spacetime metric and ba-
ryon asymmetry in the universe. In the rightmost column SM stands for SU(3)[×SU(2)] × 
U(1). The term [×SU(2)] indicates appearance of weak interaction “automatically” be-
tween u- and d-quarks as well as between e and ν . 

Ph. HE particles HE symm. Low energy symm. 

I F&G theory SUSY SUSY 

O chernons SUSY SM; SUSY 

II SM particles SUSY GUT SM; SUSY? 

 

 
Figure 4. Comparison between the inflationary and topological paradigms for the early 
universe. The topological scenarios replaces the period of accelerated expansion by a to-
pological phase to explain homogeneity, isotropy, flatness and near scale invariance. In 
both paradigms, the universe for t > 0 is well described by the standard Big Bang cosmol-
ogy. 

 
We conclude it is premature to consider supersymmetry a dream. Instead, a 

rich spectrum of light, laboratory observable bosonic and fermionic states are 
predicted by the supermultiplet Table 1 as colored constituents making singlet 
composites. 
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Appendix 
Chernon-Particle Correspondence 

The matter-chernon correspondence for the two first flavors is indicated in Ta-
ble A1. 
 
Table A1. Visible and Dark Matter with corresponding particles and chernon compo-
sites. e′  and γ ′  refer to dark electron and dark photon, respectively. BC stands for 
Bose condensate. Chernons obey anyon statistics. The binding of chernon composites is 
described in Section 3.3. 

SM Matter 1st gen. Chernon state 

eν  0 0 0
R G Bm m m  

Ru  0
Rm m m+ +  

Gu  0
Gm m m+ +  

Bu  0
Bm m m+ +  

e−  m m m− − −  

Rd  0 0
G Bm m m−  

Gd  0 0
B Rm m m−  

Bd  0 0
R Gm m m−  

W-Z Dark Matter Particle 

boson (or BC) 0
rs , axion(s) 

e′  axino n 

meson, baryon o ,3nn n  

nuclei (atoms with γ ′ ) multi n 

celestial bodies any dark stuff 

black holes anything (neutral) 
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