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Abstract

Cancer is known as a heterogeneous disease. Cancer driver genes (CDGs) need to be

inferred for understanding tumor heterogeneity in cancer. However, the existing computa-

tional methods have identified many common CDGs. A key challenge exploring cancer pro-

gression is to infer cancer subtype-specific driver genes (CSDGs), which provides guidane

for the diagnosis, treatment and prognosis of cancer. The significant advancements in sin-

gle-cell RNA-sequencing (scRNA-seq) technologies have opened up new possibilities for

studying human cancers at the individual cell level. In this study, we develop a novel unsu-

pervised method, CSDGI (Cancer Subtype-specific Driver Gene Inference), which applies

Encoder-Decoder-Framework consisting of low-rank residual neural networks to inferring

driver genes corresponding to potential cancer subtypes at the single-cell level. To infer

CSDGs, we apply CSDGI to the tumor single-cell transcriptomics data. To filter the redun-

dant genes before driver gene inference, we perform the differential expression genes

(DEGs). The experimental results demonstrate CSDGI is effective to infer driver genes that

are cancer subtype-specific. Functional and disease enrichment analysis shows these

inferred CSDGs indicate the key biological processes and disease pathways. CSDGI is the

first method to explore cancer driver genes at the cancer subtype level. We believe that it

can be a useful method to understand the mechanisms of cell transformation driving

tumours.

Author summary

Cancer is recognized as a complex disease with diverse characteristics. In order to com-

prehend the diversity within tumors, it is essential to infer cancer subtype-specific driver

genes (CSDGs), which offer valuable insights for investigating cancer progression and

treatment. The remarkable progress made in single-cell RNA-sequencing (scRNA-seq)

technologies has ushered in new prospects for studying human cancers at the cellular

level. Cancer Subtype-specific Driver Gene Inference (CSDGI) is a novel unsupervised
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method proposed. In our study, we use Encoder-Decoder-Framework to infer driver

genes specific to cancer subtypes in the CSDGI. We apply CSDGI to three tumor single-

cell transcriptomics data. The experimental results have shown the effectiveness of

CSDGI. Furthermore, functional and disease enrichment analyses illustrate that these

inferred CSDGs shed light on crucial biological processes and disease pathways. Our col-

lection of driver genes will serve as a valuable resource in unraveling the mechanisms driv-

ing cell transformation in tumors.

Introduction

Cancer is a heterogeneous disease characterized by the unstable cellular growth [1,2], which is

caused by a set of genes. These genes can drive tumorigenesis as drivers, and thereby are

known as cancer driver genes (CDGs) [1]. They may affect the homeostatic development for a

collection of critical cellular function containing cell proliferation, cell differentiation, cell

death, etc. To advance the research of tumor emergence and evolution, it is crucial to infer

CDGs [3,4]. Further, cancer molecular subtypes play a crucial role in deepening our insights of

cancer within tumor cell subsets as representing a heterogeneous disease instead of a single

disease [5], which may suggest therapeutic opportunities. Therefore, the discovery of these

CDGs across cancer subtypes helps explore cancer progression. To guide the diagnosis, treat-

ment and prognosis of cancer, it is also necessary to infer cancer subtype-specific driver genes

(CSDGs).

Previous studies have shown that CDGs may be tissue-specific [6] and condition-specific

[7,8]. For example, CDGs can be identified in a large number of tumor samples across cancer

subtypes using bulk transcriptome data by RNA sequencing (RNA-seq) from The Cancer

Genome Atlas (TCGA) consortium [6,9]. To infer the driver gene in large cohorts, many proj-

ects have been performed in the whole genome of thousands of tumour samples under the

International Cancer Genome Consortium (ICGC) [10, 11]. Besides, transcriptomic studies

have supported most cancer subtype discoveries rather than other omics data [12]. Neverthe-

less, previous computational methods [13–16] using bulking transcriptome data mostly iden-

tify CDGs involved in all of cells, rather than CDGs specific to cell subpopulations (cancer

subtypes). This also shows that the previous studies fail to directly infer cancer subtype-specific

driver genes in transcriptomic data.

This may conceal the heterogeneity of CDGs across different cancer subtypes. Fortunately,

more transcriptome studies have become possible due to the advancements in single-cell

RNA-sequencing (scRNA-seq) technologies [17–20]. In contrast to traditional bulk RNA-seq

providing average gene expression of cell groups [12,21], scRNA-seq allows for the quantifica-

tion of gene expression in individual cells, which facilitates the analysis of cellular differences

[22–25]. Cancer is no longer considered as a uniform entity but is rather subdivided into vari-

ous subtypes. This subtype classification is crucial for precision medicine. Understanding sub-

type-specific driver genes in cancer can aid in the development of more targeted treatment

approaches. By targeting these subtype-specific driver genes, researchers can develop more

effective drugs and treatment strategies, and provide personalized treatment and early diagno-

sis. This is particularly valuable for cancer-related research, as scRNA-seq allows for the identi-

fication and analysis of intratumoral heterogeneity [26–28]. As a result, researchers can obtain

an in-depth understanding of cancer subtypes, cellular populations, and the functions of indi-

vidual cells within tumor samples at single cell level [24,29,30]. Accordingly, the scRNA-seq

can provide a way to infer CDGs at the single-cell or cancer-subtype level.
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By using bulk transcriptome and other omic data, several methods have been developed to

identify CDGs. For example, Akavia et al. developed CONEXIC to unveil potential CDGs in

the deleted tumor region by combining gene expression data with copy number change [13].

Ng et al. proposed PARADIGM-SHIFT to infer gene activity utilizing pathway-level informa-

tion, gene expression and copy number, which helps predict mutation drivers in cancer pro-

cesses [14]. Paull et al. developed TieDIE to find small cancer driver pathway by using

genomic and transcriptomic perturbations, which may predict transcription factor in cancer

[15]. Chen et al. presented MAXDRIVER to infer CDGs by integrating genomic data and het-

erogeneous networks [16]. However, the above computational methods are limited to unveil

CDGs specific to tissues or samples since they do not take into account the relationships

between genes and cancer subtypes. To understand the heterogeneity of cancer across different

cancer subtypes, it is necessary to infer cancer subtype-specific driver genes.

In ths work, we present a novel unsupervised computational method, CSDGI (Cancer Sub-

type-specific Driver Gene Inference) to infer driver genes specific to potential cancer subtypes

at single-cell level. By only using single-cell transcriptomics data rather than a large cohort, the

proposed CSDGI method applies the Encoder-Decoder-Framework that consists of low-rank

residual neural network to selecting genes that are most associated with the identified cancer

subtypes. CSDGI ranks potential driver genes based on the association between genes and can-

cer subtypes. In each cancer subtype identification module, genes with higher rankings are

more likely to be drivers specific to the current cancer subtype. To filter the redundant genes,

the differential expression genes (DEGs) are performed before inferring driver gene. We apply

CSDGI to the real tumor single-cell transcriptomics datasets, which infers CSDGs relating to

cancer subtypes. The experimental results demonstrate that CSDGI can be an effective method

to infer driver genes for identified cancer subtypes. Especially, the associated driver genes can

be applied to explore the interpretable biological meaning of each cancer subtype. Systematic

gene ontology and disease enrichment analysis demonstrates the potential functions and key

biological processes of identified CSDGs. CSDGI is the first method to explore CSDGs at the

cancer subtype level. These CSDGs and the proposed methodology provide a new way to bet-

ter understand the mechanisms of tumorigenesis, help classify cancer subtypes and explore the

genotypic status of tumors. We believe that CSDGI can be a useful method to understand the

mechanisms of cell transformation driving tumours, and cancer progression.

Materials

Single-cell transcriptomics data in the human cancer

In this study, we obtain three single-cell transcriptomics datasets from the data repository

NCBI Gene Expression Omnibus. These data include melanoma, breast cancer, and chronic

myeloid leukemia gene expression data from GSE72056 [28], GSE75688 [29] and GSE76312

[30]. The summary of these datasets is provided in Table 1. In the melanoma dataset

(GSE72056), these cells comprise 1257 malignant melanoma tumor cells and 3388 benign

tumor cells. Besides, the breast cancer dataset (GSE75688) consists of 317 tumor cells and 198

nontumor cells. Both GSE72056 and GSE75688 datasets were transformed using logTPM as

Table 1. The summary of single-cell transcriptomics data of human cancer used in this study.

The scRNA-seq data # Number of cells # Number of genes Data source

Melanoma dataset 4,645 23,686 GEO access number: GSE72056[28]

Breast cancer dataset 515 57,915 GEO access number: GSE75688[29]

Chronic myeloid leukemia dataset 1,134 23,384 GEO access number: GSE76312[30]

https://doi.org/10.1371/journal.pcbi.1011450.t001
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inputs for the model. Additionally, the chronic myeloid leukemia dataset (GSE76312) includes

cells from the human chronic myeloid leukemia, comprising 902 tumor cells and 232 normal

cells. The dataset from GSE76312 was transformed by logRPKM as inputs of model.

Data pre-processing

To investigate the intrinsic transcriptomic signatures of tumor cells, we apply a filtering pro-

cess to the gene expression data. We filter out genes that are expressed in less than t% of cells,

where t% is set to 6% based on the previous study [31]. Additionally, we also filter out genes

that are expressed in more than (100−t)% of cells, as these ubiquitous genes are not helpful in

inferring cancer subtypes. Following the gene filtering, we select the most r% variable genes by

controlling the relationship between mean expression and variability. After gene filtering,

there are 12693 genes in the melanoma dataset, 15451 genes in the breast cancer dataset, and

10862 genes in the chronic myeloid leukemia dataset. Subsequently, we utilize a R tool

(EMDomics) [32] to obtain differential expression genes (DEGs) between tumor cells and

benign (nontumor or normal) cells. As a result, we obtain 820 DEGs in the breast cancer data-

set, 1048 DEGs in the chronic myeloid leukemia dataset, and 1170 DEGs in the melanoma

dataset. These selected DEGs also help infer CSDGs in the breast tumor cells, the chronic mye-

loid leukemia tumor cells and the malignant melanoma tumor cells. More detailed informa-

tion about DEGs can be found in S1 File.

Methods

Proposed method overview

To identify cancer subtype-specific driver genes, we propose a novel unsupervised method,

cancer subtype-specific driver gene inference (CSDGI) by using Encoder-Decoder-Frame-

work. This workflow is shown in Fig 1. Firstly, we download real tumor scRNA-seq datasets

including nontumor cells and tumor cells. These data are preprocessed to obtain the gene

expression data X. Then, we apply Encoder-Decoder-Framework to infer driver genes for each

cancer subtype. We rank genes according to their low-rank weights in the Encoder-Decoder-

Framework, i.e., the importance of a gene in various cancer subtypes will result in its higher

ranking. The output of the rank display the overall impact of each gene for every cancer sub-

types. Finally, we perform downstream analysis with cancer subtype-specific driver genes.

Encoder-Decoder-Framework

Encoder-Decoder-Framework consists of low-rank encoder module and decoder reconstruc-

tion module. As shown in Fig 1, the single-cell gene expression matrix is represented as

X ¼ ½X1;X2;X3; � � � ;Xm�
T
2 Rm�n, where Xi2Rn×1 indicate the gene expression profile of the i-

th cell. Here, m and n denote the number of cells and genes, respectively. k is the number of

estimated cancer subtypes In Encoder, motivated by the interpretable feature clustering

method and the automatic association feature learning in scRNA data [33,34], we apply the

low-rank residual network to encoding the low-rank representation of each subtype. In detail,

the gene expression of each cell Xi, i2{1,2,. . .,m} is input to the input layer. The deeper residual

neural network (ResNet) [35] aims to redefine the layers by acquiring an understanding of

residual functions associated with the input layer. The relationships between genes are often

complex, which exhibit nonlinear characteristics. In the ResNet, the learnable parameters rep-

resent the complex relationships between genes, which is shared across each subtype. This

shows that Encoder can represent nonlinear properties among genes in cells for the propsed

Encoder-Decoder-Framework. The number of residual blocks is p. The objective function of
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ResNet is as follows:

Xlþ1

i ¼ Xl
i þHðXl

i;W
lÞ; ð1Þ

Xp
i ¼ Xl

i þ
Xp� 1

j¼l
HðXj

i;WjÞ; ð2Þ

where H is the non-linear function representation, where the activate function is ReLU and

the bias is b, HðXj
i;WjÞ ¼ ReLUðWj∗Xj

i þ bjÞ. Let l ¼ 0;Xl
i ¼ X0

i ¼ Xi.

To represent the gene association across different genes in each cancer subtype, we utilize

low-rank network that is performed using low-rank matrix [36,37]. Here, we view Lk as the

low-rank (r-rank) graph of cancer subtype k. The function of low-rank network is as follows:

Dk
i ¼ tanhðXp

i ðVk � diagðVkÞÞÞ; ð3Þ

where Lk = (Bk)−1Vk(Vk)T, Vk(Vk)T is the r-rank matrix, Vk2Rn×r, the degree matrix of Vk(Vk)T

is Bk, the output is Dk
i 2 R

n�1. Empirically, we set r to 1.

In Decoder, we use the deep neural network to implement the Reconstruction Net. To

obtain the reconstructed gene expressions xki , we perform the following calculations:

xki ¼ Mk � Fki ∗þ Eki ; i ¼ 1; 2; . . . ;m; ð4Þ

where Fki ¼ tanhðGj∗Dk
i þ ejÞ; G and e are the weight and bias, � is the dot product, M and E

are the learnable weight matrix and bias for xki .

Fig 1. Workflow of CSDGI. After data pre-processing for real tumor scRNA-seq datasets, we infer different driver genes for

different cancer subtypes using Encoder-Decoder-Framework and perform downstream analysis with cancer subtype-specific

driver genes.

https://doi.org/10.1371/journal.pcbi.1011450.g001
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To minimize the loss between source gene value Xi and reconstructed gene value xki , we

apply the mean squared error (MSE) to them. The residual between Xi and xki is calculated as

follows:

L ¼
1

m

Xm

i¼1
min k ðXi � xki Þ�l

k
k2

2
; k 2 1; . . . ; sf g; ð5Þ

where m is the number of cells, s is the maximum number value for cancer subtype index k,

the low-rank weight λk is the absolute value of μk, μk is the first nontrivial left eigenvector of (I
−Lk) of low-rank matrix in the Encoder. After obtaining optimal loss, the subtype index k with

the minimum loss indicates a subtype label of each cell.

In Eq (5), it can be observed that the relevant genes of cancer subtype k have significantly

higher absolute values compared to the irrelevant genes. These differences arises from their

strong intra-associations with relevant genes and weak associations with irrelevant genes. As a

result, we utilize the λk to ensure that Xi is assigned to the appropriate cancer subtype k. Its lim-

itation is that we need to enter k in advance. Furthermore, k value shows that cancer subtypes

are not identical in this proposed method.

Gene inference and downstream analysis

To infer CSDGs, we calculate the values of low-rank weight λk2Rn×1 corresponding of each

cancer subtype k after obtaining the optimal model of Encoder-Decoder-Framework. We cal-

culate the differences between the generated cell samples and the original cell samples in each

cancer subtype, respectively. Next, we obtain the subtype label of each cell that is assigned

according to the minimum loss of model. In each cancer subtype, each value of λk is sorted in

descending order according to the weight values, where λk indicates the importances of genes

in the cancer subtype k. We define the top 5% of genes as cancer subtype-specific driver genes

in the sorted value of weight λk. In order to explore the biological meaning of CSDGs, we per-

form downstream analysis including subtype classification, functional and disease enrichment

analysis.

Measurement metrics

To quantitatively evaluate the performance of CSDGI, we adapt the accuracy metric for classi-

fication and adjusted rand index (ARI) for clustering. Theset metrics are defined as follows:

Accuracy ¼
True Positivesþ True Negatives

True Positivesþ True Negativesþ False Positivesþ False Negatives
; ð6Þ

Precision ¼
True Positives

True Positivesþ False Positives
; ð7Þ

Recall ¼
True Positives

True Positivesþ False Negatives
; ð8Þ

F1� score ¼ 2�
Precision� Recall
Precisionþ Recall

; ð9Þ

ARI ¼
RI � EðRIÞ

maxðRIÞ � EðRIÞ
; ð10Þ

where True Positives represents the number of positive samples that are correctly classified as
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positive, True Negatives represents the number of negative samples that are correctly classified

as negative, False Positives represents the number of negative samples that are incorrectly clas-

sified as positive, False Negatives represents the number of positive samples that are incorrectly

classified as negative, RI is the rand index and ARI is the adjusted rand index to assess the clus-

ter performance.

Parameter settings

To identify unique driver genes distinguishing tumor cells from nontumor cells in three real

tumor single-cell transcriptomics datasets, we set the value of k to 2. To explore different driver

genes associated with inferred cancer subtypes within tumor cells, the factoextra (R package

tool) is used to determine the cluster number of tumor cells. Based on the results of the cluster

number analysis, k is set to 2, 2, and 3 in the proposed CSDGI method for the breast tumor

cells, the chronic myeloid leukemia tumor cells, and the malignant melanoma tumor cells,

respectivcely. All model optimization experiments of CSDGI are iteratively conducted for 400

epochs using a single NVIDIA Tesla Ampere A100-PCIe-40GB GPU and the Ubuntu 18.04

system. Furthermore, all evaluation experiments are run independently 100 times and the

average results are shown in the study.

Results

Differential expression genes analysis

To filter redundant genes, we use a R tool (EMDomics) to obtain DEGs between tumor cells

and nontumor cells. Fig 2 presents different density plots of genes illustrating the distribution

of various genes in three real tumor scRNA-seq datasets. Besides, we obtain all emd scores and

p-value of preprocessing genes by using the EMDomics tool. We focus on genes having higher

emd scores with p-value< 0.05. For example, the emd score results with melanoma dataset

(GSE72056) are shown in Fig 2A–2C. Fig 2A demonstrates that the EMD score is 0.01 for the

gene RP11-567G24.1, which represents the lowest value, while Fig 2C exhibits the highest

EMD score of 23.9 for the gene TMSB4X in the breast cancer dataset. Fig 2B displays the den-

sity plot for the gene C18orf32, which shows 7.01 EMD scores. Notably, higher EMD scores

indicate a greater distinction between tumor cells (group A) and nontumor cells (group B).

Consequently, we select 820 genes with EMD scores ranging from 7 to 23.9 as DEGs in the

breast cancer dataset. Similarly, Fig 2D–2F show that we obtain 820 genes with emd scores var-

ing from 2 to 13.57 as DEGs in the chronic myeloid leukemia dataset. As shown in Fig 2G–2I,

1170 genes with emd scores more than 7 are regarded as DEGs in the melanoma dataset. More

comprehensive information of DEGs from the above three tumor datasets can be found in

S1 File.

Distinguishable performance analysis between tumor and nontumor

To quantitatively evaluate the proposed CSDGI method, we run it between nontumor cells

and tumor cells in the breast cancer, chronic myeloid leukemia and melanoma data. For all

real tumor scRNA-seq data, we set the parameter about the cluster k to 2 in the CSDGI frame-

work to select distinguishable genes between nontumor cells and tumor cells. As shown in S2

File, we list selected top-20 genes respectively for breast cancer, chronic myeloid leukemia and

the melanoma data. Here, we perform classification and clustering for selected top-20 genes.

To compare different methods, we use Recursive Feature Elimination (RFE) and Chi-square

Test (Chi2) as gene identification methods to select genes. For the classification task, we use

Support Vector Machine (SVM) and Random Forest (RF) as classification models. For the
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clustering task, we use Gaussian Mixed Model (GMM) and K-means clustering (K-means)

[38] as clustering models. As shown in Fig 3A, 3D and 3G, we find the classification accuracy

increases progressively as the number of genes increases for different gene identification meth-

ods and classification models. However, the accuracy stabilizes when the number of selected

genes fluctuates from 10 to 20. The proposed CSDGI method has outperformed other methods

for SVM and RF classification tasks in all cases of selected genes from 2 to 20. Similarly, we

also use F1-score to evaluate classification tasks. As shown in Fig 3B, 3E and 3H, our method

has still the best classification results than other methods. The reasonable explanation is that

the proposed method places its emphasis on identifying and selecting the most relevant genes

with specific cell subpopulation. These selected genes may be considered to be the potential

driver genes for influencing the characteristics of cancer subtypes. For the clustering tasks, we

also compare different methods by using GMM and K-means in the different numbers of

selected genes from 2 to 20. As shown in Fig 3C, 3F and 3I, we can find that the clustering ARI

of each method has obvious fluctuations with the number of genes from 2 to 8 rather than con-

tinuously increasing. Besides, as the increasing number of genes from 8 to 20, the clustering

ARI is sometimes reduced instead of rising steadily. However, our method has still outper-

formed other methods in most cases of selected gene numbers from 2 to 20. Therefore, the

proposed CSDGI can effectively identify potential driver genes, which helps distinguish differ-

ent cancer subtypes more correctly. These above classification and clustering results in the

breast cancer dataset, chronic myeloid leukemia dataset and melanoma dataset also show that

these selected genes have superior distinguishability for characterizing different cell

Fig 2. The density plot of all genes using the EMDomics tool between nontumor cells and tumor cells. (A, B, C) The density

plots with RP11-567G24.1 (gene), C18orf32 (DEG) and RGS1 (DEG) in the breast cancer dataset. (D, E, F) The density plots with

HNRNPKP3 (gene), TCTEX1D1 (DEG) and ARRDC3 (DEG) in the chronic myeloid leukemia dataset. (G, H, I) The density plots

with HEATR8-TTC4 (gene), HMGA1 (DEG) and SERPINE2 (DEG) in the melanoma dataset. Group A represents the set of tumor

cells. Group B represents the set of nontumor cells.

https://doi.org/10.1371/journal.pcbi.1011450.g002
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subpopulations. More importantly, these identified driver genes between known cell types and

potential cancer subtypes may unveil the important driver genes that drive the transformation

from non-tumor cells to tumor cells (cancer subtype).

Estimation of cancer subtypes

To identify cancer subtypes, we apply the proposed CSDGI to the tumor cells in the breast can-

cer, chronic myeloid leukemia and melanoma data. After excluding nontumor, normal and

benign tumor cells, there are 317 breast tumor cells, 902 chronic myeloid leukemia tumor cells

and 1257 malignant melanoma cells in these real datasets. Due to the absence of a ground

truth of cancer subtypes, we fail to obtain the clustering information of cancer subtypes. Previ-

ous studies have acknowledged that it is difficult to determine the number of clusters in a clus-

tering task [38]. To analyze real tumor cells, the sum of squared error (SSE) is employed to

Fig 3. Classification and clustering evaluation results for selected top 20 genes in three real tumor scRNA-seq

datasets. (A, B, C) The Accuracy, F1-score and ARI plots in the breast cancer dataset. (D, E, F) The accuracy, F1-score

and ARI plots in the chronic myeloid leukemia dataset. (G, H, I) The accuracy, F1-score and ARI plots in the

melanoma dataset. For the comparison of different methods, the number of selected genes is 2, 4, 6, 8, 10 12 14, 16, 18

and 20, respectively.

https://doi.org/10.1371/journal.pcbi.1011450.g003
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identify the number of potential cancer subtypes, where the SSE funnction tool is implemented

in the R package (factoextra). The R package "factoextra" is to establish clusters through k-

means clustering, a method that aims to minimize the total within-cluster sum of squares

(WSS). This WSS metric quantifies the compactness of the clusters, and the objective is to min-

imize it to achieve more tightly-knit clusters. As shown in Fig 4A, 4C and 4E, we investigate

various cancer subtype number ranging from 1 to 10 by using the Sum of Squared Errors

(SSE) method about cluster number identification. Fig 4A, 4C and 4E exhibit the elbow point

for each tumor cell dataset, which indicates significant changes in the gradient between 1 and

10. Consequently, we select 2, 2, 3 as the optimal value of cancer subtype number, respectively,

for the breast cancer tumor cells, chronic myeloid leukemia tumor cells and the malignant

melanoma cells. In Fig 4B, 4D and 4F, we also visualize breast tumor cells, chronic myeloid

leukemia tumor cells and malignant melanoma cells according to the optimal number. To

apply the proposed CSDGI method to three real tumor cell data, we set the parameter k to 2, 2,

3, respectively. For these tumor cells from three real cancer datasets, more detailed informa-

tion about cancer subtypes can be found in S3 File.

Discovering cancer subtype-specific driver genes

To infer driver genes specific to each cancer subtype, we obtain the learnable low-rank weight

in the proposed unsupervised CSDGI framework. Here, we identify top 5% genes as driver

genes corresponding to each cancer subtype. As shown in Table 2, we obtain 41 driver genes

for each cancer subtype of breast tumor cells, respectively. These underlined genes are genes

shared by Subtype 1 and Subtype 2. For the chronic myeloid leukemia tumor cells and the

malignant melanoma cells, we infer 52 and 59 driver genes for each cancer subtype, respec-

tively. As shown in S4 File, we list all detailed information of driver genes. Besides, we also

highlight the shared driver genes of each cancer subtype by using the bold in S4 File.

Fig 4. Estimate the number of cancer subtypes for three real tumor cells datasets. (A, B) The optimal value of cancer subtype number and

visualization of tumor cells with two possible cancer subtypes in the breast cancer tumor cells. (C, D) The optimal value of cancer subtype

number and visualization of tumor cells with two possible cancer subtypes in the chronic myeloid leukemia tumor cells. (E, F) The optimal

value of cancer subtype number and visualization of malignant tumor cells with three possible cancer subtypes in the malignant melanoma

tumor cells.

https://doi.org/10.1371/journal.pcbi.1011450.g004
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To unveil the biological meaning of driver genes, we perform a more detailed analysis. We

calculate correlations and p-values according the pearson correlation coefficient, and then the

gene co-expression network can be built based on these results. As shown in Fig 5, we obtain

driver gene co-expression network of each cancer subtype by we obtain driver gene co-expres-

sion network of each cancer subtype by calculating correlation between driver genes. In

Table 2, we can find that MGP, SCGB2A2, HLA, TFF3, AGR2, TM4SF1, MGST1, HLA-B, CLU
and AZGP1 are shared in two subtypes for the breast tumor cells. Previous studies show that

MGP promotes the breast cancer proliferation [39], SCGB2A2 and TFF3 can be viewed a

Table 2. The identified cancer subtype-specific driver genes in the breast tumor cells.

Cancer

subtypes

Driver genes

Subtype 1 MGP, PIP, SCGB2A2, MUCL1, GSTP1, HLA-DRA, CD74, LDHB, TFF3, SLPI, APOD, PPP1R1B,

PPP1R14C, FITM2, S100P, RN7SL56P, SEPP1, AGR2, MRPL45, TFF1, RBP1, PLEKHA5,

CEACAM6, SNCG, MIEN1, TM4SF1, MT1G, MGST1, RP11-658F2.8, AGR3, HLA-B, GSTM3,

HLA-A, MDK, CLU, ARHGDIB, ORMDL3, TMEM45A, TCEAL1, CISD3, AZGP1

Subtype 2 MGP, CTTN, SSR4, NDUFC2, CLU, S100A11, NDUFS5, AGR2, MGST1, TFF3, SRP9, EGR1,

DYNLT1, TXNDC17, MIF, MT1X, SOX4, PPFIA1, AZGP1, HLA-DRA, PSENEN, KRT19, CD9,

HLA-B, TM4SF1, KRT7, SCGB2A2, MT2A, S100A16, ERGIC3, KRTCAP2, PPAPDC1B, UQCRQ,

EFNA1, ARF4, CD24P4, PPA1, CD63, POLR2K, ATRAID, CD46

Notes:These underlined genes are genes shared by Subtype 1 and Subtype 2.

https://doi.org/10.1371/journal.pcbi.1011450.t002

Fig 5. Driver gene co-expression network of each cancer subtype for three real tumor cells datasets. (A, B) Cancer

subtype 1 and 2 in the breast cancer tumor cells. (C, D) Cancer subtype 1 and 2 in the chronic myeloid leukemia tumor

cells. (E, F, G) Cancer subtype 1, 2 and 3 in the malignant melanoma tumor cells.

https://doi.org/10.1371/journal.pcbi.1011450.g005
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valuable predictive biomarker in breast cancer [40,41]. MUCL1 are identified as driver genes

in subtype 1, which have been found to be critical markers of breast cancer [42]. In Fig 5A and

5B, MGP, SCGB2A2 and TFF3 have been marked with red box. For the chronic myeloid leuke-

mia tumor cells, the shared driver genes between subtype 1 and 2 include RPL32, SAT1,

SNORD102, CD52, TSTD1, SELL, ATRAID, PSMB6, NFKBIA, NDUFA12 and DBI in S4 File.

Previous evidences illustrate that RPL32 plays an important role in the SF3B1 mutation for

chronic myeloid leukemia (CML) disease progression [43], CD52 helps identify molecular sig-

nature of CML [44] and NFKBIA plays a strategic role in CML molecular response [45]. In

addition, LGALS1 is identified as driver genes in the CML cancer subtype 1 and previous

works also find that LGALS1 can be selected as a critical biomarker of CML [46]. In Fig 5C

and 5D, RPL32, CD52, NFKBIA and LGALS1 have been marked with red box. For the malig-

nant melanoma cells, PMEL, IFITM1, HSPA1A, DUSP1, FOS and TMSB4X are the shared

driver genes across three subtypes in S4 File. Previous studies have indicated that PMEL is a

important link between Parkinson’s disease and melanoma [47]. Other researchers have also

regarded it as a prognostic predictor in skin cutaneous melanoma (SKCM) [48]. Furthermore,

the shared RGS between Subtype 1 and Subtype 3, and the shared MIA between Subtype 1 and

Subtype 2 have been viewed as important biomarkers in malignant melanoma [49,50]. In Fig

5E–5G, PMEL, RGS1and MIA have been marked with red box. Overall, these cancer subtype-

specific driver genes indicates more significant biological meaning to study the breast tumor

cells, chronic myeloid leukemia tumor cells and malignant melanoma cells.

Functional and disease enrichment analysis for CSDGs

To investigate the potential biological significance of CSDGs inferred by our CSDGI method,

we perform the functional and disease enrichment analysis. We use Gene Ontology (GO,

http://www.geneontology.org/) to analyze the biological function: biological process (BP), cel-

lular component (CC), and molecular function (MF). Besides, the Kyoto Encyclopedia of

Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/) and Reactome Pathway

(Reactome, http://reactome.org/) are also included in functioanal enrichment analysis. For the

disease enrichment analysis, we use Disease Ontology (DO, http://disease-ontology.org/), Dis-

GeNET (http://www.disgenet.org/) and Network of Cancer Genes database (NCG, http://ncg.

kcl.ac.uk/) to analyze the inferred driver genes of each cancer subtype. As a result, we set the

threshold of significance enrichment p-value to 0.01. As shown in S5 File, we list comprehen-

sive information on functional and disease enrichment analysis about CSDGs for the breast

cancer tumor cells, the chronic myeloid leukemia tumor cells and the malignant melanoma

cells. Previous studies show that cell aggregation and mineral absorption have a significant

influence on the progression of breast cancer [51,52]. Polyamine biosynthetic process pro-

motes CML tumor growth [53] and ferroptosis may be a novel strategy for chronic myeloid

leukemia anti-tumor therapy [54]. Cell aggregation, mineral absorption, polyamine biosyn-

thetic process, and ferroptosis can be viewed as important enrichment analysis results in in S5

File. For the malignant melanoma cells, the enrichment analysis also indicates more important

melanoma-related biological processes including melanin biosynthetic process, melanin meta-

bolic process and melanosome organization in S5 File. Furthermore, we find that genes

enriched on the same term type are different driver genes of different cancer subtypes for a

group of tumor cells. This may be because the informative CSDGs exhibit differences between

cancer subtypes. All in all, these inferred CSDGs can serve as valuable references to drive can-

cer subtype growth and finding new tumor driver markers, which illustrates the biological

meaning of tumor development and helps understand the mechanisms of cell transformation

driving tumours.
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Discussion and conclusions

Cancer is a heterogeneous disease, where cancer driver genes can drive tumorigenesis and the

unstable cellular growth. CDGs show the characteristics of tissue-specific or condition-spe-

cific. Thus, to deeply understand the cancer progression mechanisam at the cancer subtype

level, we need to uncover CSDGs. However, most of the existing computational methods have

mainly used the cohort information rather than the cancer subtype-specific information to

infer CDGs. Tumors of different subtype are highly heterogeneous. Therefore, we need to

identify CDGs from tumor cells of each cancer subtype. In this work, we use the unsupervised

learning mechanism to propose a novel CSDGI computational method. At single-cell level, we

use CSDGI to infer CSDGs by only considering single-cell transcriptomics data. In the pro-

posed CSDGI, the Encoder-Decoder-Framework helps identify potential cancer subtypes. Fur-

thermore, the application to the breast cancer tumor cells, the chronic myeloid leukemia

tumor cells and the malignant melanoma tumor cells indicates that CSDGI may be a new solu-

tion to explain cancer subtype molecular mechnism.

One possible limitation of the current CSDGI framework is that these inferred CSDGs rely

on the cancer subtype identification. The different tumor cells in the same cancer subtype may

result in different CSDGs. Another limitation is that the current CSDGI method may be better

suited to identify CDGs in the near 1000-dimension gene space. For the high-dimension gene

expression data, such as near 20,000-dimension gene space without gene filtering, the pro-

posed CSDGI could not infer CSDGs more efficiently. In the future, we consider to use geno-

mics data including biological sequence informations to uncover more cancer-related driver

genes. The existing methods can be combined into our framework, such as BioSeq-Diabolo

[55], BioSeq-BLM [56]. In summary, we believe that CSDGI is fundamental to explore specific

biological function involved in tumorigenesis across cancer subtypes, and improve existing

driver gene identification methods. The cancer subtype-specific framework may provide a

new solution to deeply understand the mechanisms of cell transformation and cancer progres-

sion, and give a shortlist of biologically meaningful genes that have potential to promote preci-

sion cancer medicine.
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